Cost-effectiveness analysis of introducing universal human papillomavirus vaccination of girls aged 11 years into the National Immunization Program in Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2015
Editora
ELSEVIER SCI LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
SILVA, Gulnar Azevedo
AYRES, Andreia
ITRIA, Alexander
RAMA, Cristina Helena
CLARK, Andrew D.
RESCH, Stephen
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
VACCINE, v.33, suppl.1, p.A135-A142, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: To evaluate the impact and cost-effectiveness of introducing universal human papillomavirus (HPV) vaccination into the National Immunization Program (NIP) in Brazil. Methods: The Excel-based CERVIVAC decision support model was used to compare two strategies: (1) status quo (with current screening program) and (2) vaccination of a cohort of 11-year-old girls. National parameters for the epidemiology and costs of cervical cancer were estimated in depth. The estimates were based on data from the health information systems of the public health system, the PNAD 2008 national household survey, and relevant scientific literature on Brazil. Costs are expressed in 2008 United States dollars (US$), and a 5% discount rate is applied to both future costs and future health benefits. Results: Introducing the HPV vaccine would reduce the burden of disease. The model estimated there would be 229 deaths avoided and 6677 disability-adjusted life years (DALYs) averted in the vaccinated cohort. The incremental cost-effectiveness ratios (ICERs) per DALY averted from the perspectives of the government (US$ 7663), health system (US$ 7412), and society (US$ 7298) would be considered cost-effective, according to the parameters adopted by the World Health Organization. In the sensitivity analysis, the ICERs were most sensitive to variations in discount rate, disease burden, vaccine efficacy, and proportion of cervical cancer caused by types 16 and 18. However, universal HPV vaccination remained a cost-effective strategy in most variations of the key estimates. Conclusions: Vaccine introduction could contribute additional benefits in controlling cervical cancer, but it requires large investments by the NIP. Among the essential conditions for attaining the expected favorable results are immunization program sustainability, equity in a population perspective, improvement of the screening program, and development of a surveillance system.
Palavras-chave
Papillomavirus vaccines, HPV vaccines, Cost-benefit analysis, Cost effectiveness, Uterine cervical neoplasms, Uterine cancer
Referências
  1. [Anonymous], 2013, SISCOLO SISMAMA SIST
  2. [Anonymous], 2014, SIAB SISTEMA INFORM
  3. [Anonymous], 2013, MED MENT ORT PROT MA
  4. [Anonymous], 2008, PNAD PESQ NAC AM DOM
  5. [Anonymous], 2006, PNAD PESQ NAC AM DOM, P125
  6. Ayres Andréia Rodrigues Gonçalves, 2013, Cad. saúde colet., V21, P289, DOI 10.1590/S1414-462X2013000300009
  7. Brasil. Ministerio da Saude Instituto Nacional de Cancer - INCA, 2010, PLAN AC RED INC MORT
  8. Brasil. Ministerio da Saude. Secretaria de Ciencia Tecnologia e Insumos Estrategicos. Departamento de Ciencia e Tecnologia, 2009, DIR MET EST AV EC TE
  9. (CDC) CfDCaP, 2011, MMWR-MORBID MORTAL W, V60, P1382
  10. Centers for Disease Control and Prevention (CDC). Advisory Committee on Immunization Practices (ACIP), 2011, SUMM REP
  11. Colantonio L, 2009, VACCINE, V27, P5519, DOI 10.1016/j.vaccine.2009.06.097
  12. Commission on Macroeconomics and Health, 2001, MACR HLTH INV HLTH E
  13. Demarteau N, 2012, PHARMACOECONOMICS, V30, P337, DOI 10.2165/11591560-000000000-00000
  14. Dobson SRM, 2013, JAMA-J AM MED ASSOC, V309, P1793, DOI 10.1001/jama.2013.1625
  15. Fesenfeld M, 2013, VACCINE, V31, P3786, DOI 10.1016/j.vaccine.2013.06.060
  16. Franco EL, 2012, VACCINE, V30, pF175, DOI 10.1016/j.vaccine.2012.06.092
  17. Fundacao Oncocentro de Sao Paulo - Secretaria de Estado de Sao Paulo, 2009, SOBR VIDA PAC COM CA, P97
  18. Gamarra CJ, 2010, REV SAUDE PUBL, V44, P629
  19. Goldie SJ, 2007, VACCINE, V25, P6257, DOI 10.1016/j.vaccine.2007.05.058
  20. Instituto Brasileiro de Geografia, 2008, PESQ NAC AM DOM
  21. Instituto Nacional do Cancer - INCA, 2011, DIR BRAS RASTR COL U
  22. Jit M, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-23
  23. Lazcano-Ponce E, 2014, VACCINE, V32, P725, DOI 10.1016/j.vaccine.2013.11.059
  24. Markowitz LE, 2012, VACCINE, V30, pF139, DOI 10.1016/j.vaccine.2012.05.039
  25. Ministerio da Saude, 2011, PAR TECN CONJ N 01 2
  26. Murta E, 2000, REV COL BRAS CIR, V27, P307
  27. Novaes HMD, 2012, AVALIACAO TECNOLOGIC
  28. Schiller JT, 2012, VACCINE, V30, pF123, DOI 10.1016/j.vaccine.2012.04.108
  29. Silva Gulnar Azevedo e, 2011, Rev Saude Publica, V45, P1009
  30. Toscano CM, 2013, VACCINE, V31, pC12, DOI 10.1016/j.vaccine.2013.05.033
  31. Vaccarella S, 2013, EUR J CANCER, V49, P3262, DOI 10.1016/j.ejca.2013.04.024
  32. Vanni T, 2012, VACCINE, V30, P4866, DOI 10.1016/j.vaccine.2012.04.087
  33. WHO, 2013, WHO METH DAT SOURC G, P86
  34. WHO, 2004, GLOB STAT REP ALC 20, P9
  35. World Bank, 2008, DAT OFF EXCH RAT LCU