Echogenicity as a surrogate for bioresorbable everolimus-eluting scaffold degradation: analysis at 1-, 3-, 6-, 12-18, 24-, 30-, 36-and 42-month follow-up in a porcine model

Carregando...
Imagem de Miniatura
Citações na Scopus
35
Tipo de produção
article
Data de publicação
2015
Editora
SPRINGER
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
ISHIBASHI, Yuki
EGGERMONT, Jeroen
NAKATANI, Shimpei
CHO, Yun Kyeong
DIJKSTRA, Jouke
REIBER, Johan H. C.
SHEEHY, Alexander
LANE, Jennifer
KAMBERI, Marika
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, v.31, n.3, p.471-482, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The objective of the study is to validate intravascular quantitative echogenicity as a surrogate for molecular weight assessment of poly-l-lactide-acid (PLLA) bioresorbable scaffold (Absorb BVS, Abbott Vascular, Santa Clara, California). We analyzed at 9 time points (from 1- to 42-month follow-up) a population of 40 pigs that received 97 Absorb scaffolds. The treated regions were analyzed by echogenicity using adventitia as reference, and were categorized as more (hyperechogenic or upperechogenic) or less bright (hypoechogenic) than the reference. The volumes of echogenicity categories were correlated with the measurements of molecular weight (Mw) by gel permeation chromatography. Scaffold struts appeared as high echogenic structures. The quantification of grey level intensity in the scaffold-vessel compartment had strong correlation with the scaffold Mw: hyperechogenicity (correlation coefficient = 0.75; P < 0.01), upperechogenicity (correlation coefficient = 0.63; P < 0.01) and hyper + upperechogenicity (correlation coefficient = 0.78; P < 0.01). In the linear regression, the R-2 for high echogenicity and Mw was 0.57 for the combination of hyper and upper echogenicity. IVUS high intensity grey level quantification is correlated to Absorb BVS residual molecular weight and can be used as a surrogate for the monitoring of the degradation of semi-crystalline polymers scaffolds.
Palavras-chave
Absorb, Bioresorbable vascular scaffold, Degradation, Echogenicity, IVUS, Porcine
Referências
  1. Brugaletta S, 2012, INT J CARDIOVAS IMAG, V28, P1307, DOI 10.1007/s10554-011-9981-4
  2. Brugaletta S, 2011, JACC-CARDIOVASC INTE, V4, P1281, DOI 10.1016/j.jcin.2011.08.014
  3. Bruining N, 2010, JACC-CARDIOVASC INTE, V3, P449, DOI 10.1016/j.jcin.2010.02.004
  4. Bruining N, 2007, CATHETER CARDIO INTE, V70, P968, DOI 10.1002/ccd.21310
  5. Campos CM, 2014, CATHETER CARDIO INTE, V84, P46, DOI 10.1002/ccd.25541
  6. Campos CM, 2013, INT J MOL SCI, V14, P24492, DOI 10.3390/ijms141224492
  7. Chen SL, 2001, GENE, V264, P197, DOI 10.1016/S0378-1119(01)00340-7
  8. Durand E, 2013, CIRC CARDIOVASC INTE
  9. Filho ES, 2008, ULTRASOUND MED BIOL, V34, P160, DOI 10.1016/j.ultrasmedbio.2007.06.025
  10. Fleiss Joseph L., 1986, DESIGN ANAL CLIN EXP
  11. Garcia-Garcia HM, 2009, EUROINTERVENTION, V4, P443, DOI 10.4244/EIJV4I4A77
  12. Garcia-Garcia HM, 2014, JACC-CARDIOVASC IMAG, V7, P1130, DOI 10.1016/j.jcmg.2014.06.018
  13. Hattori K, 2012, JACC-CARDIOVASC IMAG, V5, P169, DOI 10.1016/j.jcmg.2011.11.012
  14. Henton DE, 2005, POLYLACTIC ACID TECH
  15. Iqbal J, 2013, EUR HEART J
  16. Koning G, 2002, INT J CARDIOVAS IMAG, V18, P235, DOI 10.1023/A:1015551920382
  17. Lane JP, 2014, JACC CARDIOVASC INTE
  18. Lee IS, 2013, CARDIOVASC ULTRASOUN, V11, DOI 10.1186/1476-7120-11-25
  19. Mintz GS, 2011, EUROINTERVENTION, V6, P1123, DOI 10.4244/EIJV6I9A195
  20. Nair A, 2002, CIRCULATION, V106, P2200, DOI 10.1161/01.CIR.0000035654.18341.5E
  21. Nair Anuja, 2007, EuroIntervention, V3, P113
  22. Nozue T, 2013, CORONARY ARTERY DIS, V24, P481, DOI 10.1097/MCA.0b013e32836325ac
  23. Okubo M, 2008, ULTRASOUND MED BIOL, V34, P655, DOI 10.1016/j.ultrasmedbio.2007.09.015
  24. Onuma Y, 2010, CIRCULATION, V122, P2288, DOI 10.1161/CIRCULATIONAHA.109.921528
  25. OTSU N, 1979, IEEE T SYST MAN CYB, V9, P62
  26. Parker NG, 2010, BIOMED MATER, V5, DOI 10.1088/1748-6041/5/5/055004
  27. Puri R, 2014, EUR HEART J-CARD IMG, V15, P380, DOI 10.1093/ehjci/jet251
  28. RASHEED Q, 1995, AM HEART J, V129, P631, DOI 10.1016/0002-8703(95)90307-0
  29. Sarno G, 2010, CATHETER CARDIO INTE, V75, P914, DOI 10.1002/ccd.22332
  30. Sathyanarayana S, 2009, EUROINTERVENTION, V5, P133
  31. Schartl M, 2001, CIRCULATION, V104, P387, DOI 10.1161/hc2901.093188
  32. Serruys PW, 2013, EUROINTERVENTION
  33. Serruys PW, 2011, J AM COLL CARDIOL, V58, P1578, DOI 10.1016/j.jacc.2011.05.050
  34. Serruys PW, 2010, CIRCULATION, V122, P2301, DOI 10.1161/CIRCULATIONAHA.110.970772
  35. Strandberg E, 2012, CIRC-CARDIOVASC INTE, V5, P39, DOI 10.1161/CIRCINTERVENTIONS.111.964270
  36. Vorpahl Marc, 2009, EuroIntervention, V5 Suppl F, pF28, DOI 10.4244/EIJV5IFA5
  37. Waksman R, 2013, CIRC-CARDIOVASC INTE, V6, P644, DOI 10.1161/CIRCINTERVENTIONS.113.000693
  38. Wu HC, 2003, BIOMATERIALS, V24, P3871, DOI 10.1016/S0142-9612(03)00135-2
  39. Wykrzykowska Joanna J, 2009, EuroIntervention, V5 Suppl F, pF7, DOI 10.4244/EIJV5IFA1
  40. Zhao ZJ, 2013, JACC-CARDIOVASC IMAG, V6, P86, DOI 10.1016/j.jcmg.2012.08.010