Non-lobar atelectasis generates inflammation and structural alveolar injury in the surrounding healthy tissue during mechanical ventilation

Carregando...
Imagem de Miniatura
Citações na Scopus
69
Tipo de produção
article
Data de publicação
2014
Editora
BIOMED CENTRAL LTD
Indexadores
Título da Revista
ISSN da Revista
Título do Volume
Autores
RETAMAL, Jaime
BERGAMINI, Bruno Curty
CARVALHO, Alysson R.
BOZZA, Fernando A.
BORZONE, Gisella
LARSSON, Anders
HEDENSTIERNA, Goeran
BUGEDO, Guillermo
BRUHN, Alejandro
Autor de Grupo de pesquisa
Editores
Coordenadores
Organizadores
Citação
CRITICAL CARE, v.18, n.5, article ID 505, 9p, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: When alveoli collapse the traction forces exerted on their walls by adjacent expanded units may increase and concentrate. These forces may promote its re-expansion at the expense of potentially injurious stresses at the interface between the collapsed and the expanded units. We developed an experimental model to test the hypothesis that a local non-lobar atelectasis can act as a stress concentrator, contributing to inflammation and structural alveolar injury in the surrounding healthy lung tissue during mechanical ventilation. Methods: A total of 35 rats were anesthetized, paralyzed and mechanically ventilated. Atelectasis was induced by bronchial blocking: after five minutes of stabilization and pre-oxygenation with FIO2 = 1.0, a silicon cylinder blocker was wedged in the terminal bronchial tree. Afterwards, the animals were randomized between two groups: 1) Tidal volume (V-T) = 10 ml/kg and positive end-expiratory pressure (PEEP) = 3 cmH(2)O (V(T)10/PEEP3); and 2) V-T=20 ml/kg and PEEP = 0 cmH2O (V(T)20/zero end-expiratory pressure (ZEEP)). The animals were then ventilated during 180 minutes. Three series of experiments were performed: histological (n = 12); tissue cytokines (n = 12); and micro-computed tomography (microCT; n = 2). An additional six, non-ventilated, healthy animals were used as controls. Results: Atelectasis was successfully induced in the basal region of the lung of 26 out of 29 animals. The microCT of two animals revealed that the volume of the atelectasis was 0.12 and 0.21 cm(3). There were more alveolar disruption and neutrophilic infiltration in the peri-atelectasis region than the corresponding contralateral lung (control) in both groups. Edema was higher in the peri-atelectasis region than the corresponding contralateral lung (control) in the V(T)20/ZEEP than VT10/PEEP3 group. The volume-to-surface ratio was higher in the peri-atelectasis region than the corresponding contralateral lung (control) in both groups. We did not find statistical difference in tissue interleukin-1 beta and cytokine-induced neutrophil chemoattractant-1 between regions. Conclusions: The present findings suggest that a local non-lobar atelectasis acts as a stress concentrator, generating structural alveolar injury and inflammation in the surrounding lung tissue.
Palavras-chave
Referências
  1. Albert RK, 2012, AM J RESP CRIT CARE, V185, P702, DOI 10.1164/rccm.201109-1667PP
  2. Baumgardner JE, 2011, J APPL PHYSIOL, V111, P1233, DOI 10.1152/japplphysiol.01054.2011
  3. Bellani G, 2011, AM J RESP CRIT CARE, V183, P1193, DOI 10.1164/rccm.201008-1318OC
  4. Borges JB, 2014, CRIT CARE MED, V42, pE279, DOI 10.1097/CCM.0000000000000161
  5. Cereda M, 2013, CRIT CARE MED, V41, P527, DOI 10.1097/CCM.0b013e31826ab1f2
  6. Cressoni M, 2014, AM J RESP CRIT CARE, V189, P149, DOI 10.1164/rccm.201308-1567OC
  7. de Prost N, 2011, J APPL PHYSIOL, V111, P1249, DOI 10.1152/japplphysiol.00311.2011
  8. Dreyfuss D, 1998, AM J RESP CRIT CARE, V157, P294
  9. Fanelli V, 2009, CRIT CARE MED, V37, P1046, DOI 10.1097/CCM.0b013e3181968e7e
  10. Gattinoni L, 2012, CURR OPIN ANESTHESIO, V25, P141, DOI 10.1097/ACO.0b013e3283503125
  11. Gattinoni L, 2006, NEW ENGL J MED, V354, P1775, DOI 10.1056/NEJMoa052052
  12. GLAZIER JB, 1967, J APPL PHYSIOL, V23, P694
  13. Grasso S, 2009, AM J RESP CRIT CARE, V180, P415, DOI 10.1164/rccm.200901-0156OC
  14. Hong SB, 2005, CRIT CARE MED, V33, P2049, DOI 10.1097/01.CCM.0000178186.37167.53
  15. Kira S, 2005, ACTA ANAESTH SCAND, V49, P351, DOI 10.1111/j.1399-6576.2004.00593.x
  16. Matute-Bello G, 2008, AM J PHYSIOL-LUNG C, V295, pL379, DOI 10.1152/ajplung.00010.2008
  17. MEAD J, 1970, J APPL PHYSIOL, V28, P596
  18. MUSCEDERE JG, 1994, AM J RESP CRIT CARE, V149, P1327
  19. Otto CM, 2008, J APPL PHYSIOL, V104, P1485, DOI 10.1152/japplphysiol.01089.2007
  20. Pinhu L, 2003, LANCET, V361, P332, DOI 10.1016/S0140-6736(03)12329-X
  21. Rausch SMK, 2011, ANN BIOMED ENG, V39, P2835, DOI 10.1007/s10439-011-0328-z
  22. Rotta AT, 2001, CRIT CARE MED, V29, P2176, DOI 10.1097/00003246-200111000-00021
  23. ROUBY JJ, 1993, INTENS CARE MED, V19, P383, DOI 10.1007/BF01724877
  24. Slutsky AS, 2013, NEW ENGL J MED, V369, P2126, DOI 10.1056/NEJMra1208707
  25. Terragni PP, 2007, AM J RESP CRIT CARE, V175, P160, DOI 10.1164/rccm.200607-915OC
  26. Brower RG, 2000, NEW ENGL J MED, V342, P1301
  27. Tremblay L, 1997, J CLIN INVEST, V99, P944, DOI 10.1172/JCI119259
  28. Tsuchida S, 2006, AM J RESP CRIT CARE, V174, P279, DOI 10.1164/rccm.200506-1006OC
  29. WEIBEL ER, 1966, J CELL BIOL, V30, P23, DOI 10.1083/jcb.30.1.23
  30. Wellman TJ, 2012, J APPL PHYSIOL, V113, P947, DOI 10.1152/japplphysiol.01631.2011
  31. Yoshida T, 2013, AM J RESP CRIT CARE, V188, P1420, DOI 10.1164/rccm.201303-0539OC