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Abstract

Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with

human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS).

The molecular mechanism underlying this capacity and the differential host cell response to

HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are

commonly found in cattle but, so far, were not isolated from HUS patients. Here we con-

ducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC

strains: EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, iso-

lated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell condi-

tioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to

EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not sig-

nificantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global

gene expression comparison of both strains cultured in conditioned medium revealed a

gene set exclusively expressed in EH41, which includes the dicA putative virulence factor

regulator. Network analysis showed that this set of genes constitutes an EH41 specific tran-

scriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC

strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to

EH41 or to Ec472/01 presented a major transcriptional module containing many hubs

related to inflammatory response that was not found in the GCN of control cells. Moreover,

EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large

number of genes with high positive and negative covariance interactions. EH41 grows

slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related

genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its
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capacity for dysregulating enterocyte genome functioning and its enhanced enteric survival

due to slow growth.

Introduction

Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy that is clinically defined

by thrombocytopenia, non-immune hemolytic anemia, and acute renal failure. Typical HUS

develops secondary to gastrointestinal infection with Shiga toxin (Stx)-producing Escherichia
coli (STEC) [1]. The pathogenesis of STEC in intestinal illness usually entails attachment to the

intestinal epithelial cells, followed by the secretion of Stx. Most STEC attach via the intimin

adherence protein, encoded by the eae gene that resides on the locus of enterocyte effacement

(LEE) pathogenicity island. There are, however, LEE-negative STEC strains, such as O113:

H21, that do not produce intimin but can also cause HUS [2–5]. In fact, this serotype harbors

several virulence genes, such as sab, subAB, ehxA and possibly other yet unknown virulence

factors, but it is not clear how all these genes/factors act together with Stx in the infection path-

ogenesis [6].

Interestingly, in Brazil O113:H21 strains are commonly found in cattle but, so far, were not

isolated from HUS patients [7, 8]. Brazil is the second beef cattle producer in the world and,

with India, the largest exporter in 2016 [9, 10]. Therefore, it is important for food safety and

public health to identify and characterize the O113:H21 strains isolated from cattle due to their

virulence potential as human pathogens.

Genotypic and phenotypic studies have been performed in O113:H21 STEC strains isolated

from food, environment, animal reservoir, and human infections aiming at characterizing the

pathogens and the environmental strains [6, 7, 11, 12]. These studies also searched for molecu-

lar markers, such as virulence genes, for: i) discrimination of environmental strains from those

associated with human diseases; ii) evaluation of the capacity of animal isolates in causing

human diseases. However, HUS-associated and environmental-isolated STEC strains did not

present clear differences, so the virulence potential of carcass-associated strains remained

indeterminate.

Hence the molecular mechanism underlying the capacity to cause HUS and the differential

host cell response to HUS-causing strains are not yet completely understood. In the present

work we conducted gene co-expression network (GCN) in two O113:H21 STEC strains: i) one

isolated from a HUS patient (EH41 reference strain); ii) the other isolated from bovine feces

(Ec472/01). We also characterized the differential Caco-2 cells response after EH41 or Ec472/

01 interaction. GCNs were based on differentially expressed genes and constructed using Pear-

son’s correlation in STEC strains or enterocyte cells. In STEC networks this approach permit-

ted: i) the analysis of GCNs for differentially expressed genes; ii) the identification of

transcriptional modules; iii) the identification of candidate genes as molecular markers able to

distinguish between HUS-associated O113:H21 STEC strains and strains isolated from animal

or environmental sources. In Caco-2 networks the GCN analysis characterized the differential

enterocyte response for EH41 or Ec472/01 interaction.

Materials and methods

Fig 1 shows the workflow adopted for the transcriptional analyses (comparative global gene

expression and gene co-expression network analysis) of the two O113:H21 STEC strains:

EH41, isolated from a HUS patient, and Ec472/01, isolated from cattle feces, both cultured in
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fresh or in Caco-2 cell line (enterocyte) conditioned media. Two additional comparative gene

network analyses were performed for cultured Caco-2 cells exposed to EH41 or Ec472/01

bacteria.

Bacterial strains

We used a total of 12 STEC strains of serotype O113:H21 (S1 Table) kept at Department of

Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, UNIFESP, Sao

Paulo, Brazil. The serotype, cytotoxic activity and enterohaemolytic phenotype of all these

strains were previously confirmed [7]. Global gene expression and gene network analyses were

performed for two of these strains: EH41, isolated from a child with HUS in Australia [13],

and Ec472/01 isolated from cattle feces in Brazil [7]. For all biological and molecular assays

described in the next sections, a single colony of each strain was inoculated in trypticase soy

broth and grown at 37˚C for 18 h.

Growth of strains EH41 and Ec472/01 in fresh (F) or conditioned (C)

medium and RNA extraction

Fresh (F) medium stands here for antibiotic-free DMEM medium containing 10% fetal bovine

serum (FBS). The same medium recovered after 24 h of incubation with Caco-2 cells is desig-

nated conditioned (C) medium. F or C media were subsequently used for bacterial growth

assays involving the strains EH41 or Ec472/01. Briefly, 400 μL of bacterial culture (Abs550 =

Fig 1. Workflow of gene co-expression network analyses for STEC strains and Caco-2 cells. (A) Network analysis for STEC strains. Two

comparative analyses were done to investigate if enterocyte soluble mediators modify global gene expression after bacterial growth in Caco-2-conditioned

(C) medium for 3h: i) EH41 in C medium X EH41 in F medium; ii) Ec472/01 in C medium X Ec472/01 in F medium. Another comparative analysis was done

to assess global gene expression differences between EH41 and Ec472/01 in C medium. (B) Network analyses for Caco-2 cells after 3h of interaction with

EH41 or Ec472/01. Two comparative analyses were done: Caco-2 exposed to EH41 X Caco-2 control and Caco-2 exposed to Ec472/01 X Caco-2 control.

https://doi.org/10.1371/journal.pone.0189613.g001
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0.35) were inoculated in 4 mL of F or C medium and incubated for 3 h at 37˚C. There were

four biological replicates for each bacterial strain. After this period the bacteria were recovered

by centrifugation for 10 min at 5000 xg and the pellet was suspended in 600 μL of RNAprotect

Bacteria Reagent (Qiagen cat. no. 76506, Valencia, CA) for RNA preservation. Bacterial cells

were lysed using lysozyme (1 mg/mL) and proteinase K (2 mg/mL) and incubated for 10 min

at 20˚C. Total RNA was obtained using the RNeasy Mini Kit (Qiagen cat no. 74104, Valencia,

CA). RNA purity analysis and quantification was accomplished by using the NanoVue spec-

trophotometer. RNA integrity was assessed on the Agilent BioAnalyzer 2100 (Agilent, Santa

Clara, CA). All samples presented RIN > 7.5 and were stored at -80˚C until use in hybridiza-

tion experiments.

Enterocyte-STEC interaction assays

The Caco-2 cells were cultured in T flasks (25 cm2) or in 4 wells cell culture plates containing

glass coverslips (13 mm) and DMEM with FBS (10%) and penicillin-streptomycin (100 U/mL-

100 μg/mL) in a 5% CO2 at 37˚C. The cells were grown until confluence and the formation of a

polarized epithelial cell monolayer (it occurs between 5–7 days). Twenty-four hours prior to

interaction assays the cells were washed three times with 1X phosphate buffered saline and incu-

bated with 4 mL of antibiotic-free DMEM containing 10% fetal bovine serum. Interaction

assays were performed with 400 μL or with 50 μL (Abs550 = 0.35) of bacterial culture respectively

placed on a Caco-2 monolayer cultured in T flasks or in 4 wells cell culture plates. Subsequently,

the cell cultures were incubated in 5% CO2 at 37˚C for 3 hr. After this period, the Caco-2 cells

that were exposed to bacteria and the uninfected controls—both in quadruplicates—were recov-

ered for RNA extraction or for electron microscopy.

RNA extraction

After enterocyte-STEC interaction, the cells were gently washed 3 times with 1X phosphate

buffered saline. Subsequently, Caco-2 cells were recovered from the culture flasks by vigorous

pipetting with 1X phosphate buffered saline. The cells were then centrifuged for 5 min at 5000

xg and the pellet was resuspended in 600 μL of RNAlater Reagent (Qiagen cat. no. 76154,

Valencia, CA) for RNA preservation. Total RNA was extracted from Caco-2 cells after lysing

with RLT buffer and the RNeasy Mini Kit (Qiagen cat no. 74104, Valencia, CA). RNA purity

analysis and quantification was accomplished by using the NanoVue spectrophotometer. RNA

quality was assessed on the Agilent BioAnalyzer 2100 (Agilent, Santa Clara, CA). All samples

presenting RIN> 7.5 were stored at -80˚C until use in hybridization experiments.

Microarray hybridization

STEC strains. In order to determine the gene expression profiles for EH41 and EC472/01

strains, 15 K DNA microarrrays (E. coli Gene Expression Microarray, Agilent Technologies,

cat no. G4813A-020097, Santa Clara, CA) were used. Cyanine 3-CTP fluorescent dye (Cy-3

dye) was used for hybridization labeling (Fairplay III Labeling, version april/2009, Stratagene,

adapted for one-color protocol).

Caco-2 cells. Gene expression profiles for Caco-2 cells were obtained using 44 K DNA

microarrrays (Whole Human Genome Microarray Kit, Agilent Technologies, cat no. G4112F,

Santa Clara, CA) were used. Cy-3 dye was used for hybridization labelling (One-Color Micro-

array-Based Gene Expression Analysis—Quick Amp Labeling).
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Data acquisition and processing

The microarray images were captured by the reader Agilent Bundle according to the parame-

ters recommended for bioarrays and extracted by Agilent Feature Extraction software version

9.5.3. Spots with two or more flags (low intensity, saturation, controls, etc.) were considered as

NA, that is, without valid expression value. The R software version 2.11.1 and an in house

script were used for: i) sample grouping (the comparison groups are described in Table 1); ii)

excluding transcript spots presenting three or more NAs per group; iii) converting gene

expression values to log base 2 [14,15]. Through this procedure the valid transcripts were

obtained for each of the comparison groups (Table 1). TMEV software version 4.6.1 and Sig-

nificance Analysis of Microarrays (SAM) was used for obtaining the differentially expressed

genes/ transcripts for all comparisons. All array data is available from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/, accession number GSE45979).

Gene co-expression networks (GCNs)

Gene co-expression networks (GCNs) were constructed by using Pearson’s correlation. Data

analysis, hierarchical network structure, and visualization were accomplished through Cytos-

cape (version 3.1.0, www.cytoscape.org). All networks were tested for scale-free status, i.e.

power law distributions in empirical data [15]. The GCN correlation thresholds were chosen

in order to ensure that most of nodes continued to be connected to the major component and

that the network remained stable along a threshold range, i.e., maintaining network’s topologi-

cal structure [14].

Venn diagram analysis

We used a web tool Draw Venn Diagram–UGent (available at http://bioinformatics.psb.ugent.

be/webtools/Venn/) for analyzing DE gene data sets.

PCR analysis for specific gene detection in a panel O113:H21 STEC

strain

We used Primer-BLAST (Primer3 Input, version 0.4.0 and BLAST, available at http://www.

ncbi.nlm.nih.gov/tools/primer-blast/) for designing specific primers (S2 Table) in order to

search for selected genes in a panel of STEC O113:H21 strain encompassing the 12 STEC

strains used in this study (S1 Table). Each PCR reaction was performed in a final volume of

25 μl containing 1.5 U of High-Fidelity Platinum Taq DNA Polymerase (Invitrogen, Carlsbad,

CA, USA), 20 mM Tris-HCl (pH 8.4), 50 mM KCl, (1.0–2.0) mM MgSO4 (S2 Table), 150 μM

each of dATP, dCTP, dGTP and dTTP, 0.3 μM of primers and 1 μl of a boiled bacterial

Table 1. Differentially expressed (DE) and exclusively expressed (EE) valid transcripts obtained for each of the comparison groups.

DE genes/transcripts

Comparison group Valid transcripts hyperexpressed hypoexpressed EE genes

EH41in C medium vs EH41in F medium 3,802 3 4 31a

Ec472 in C medium vs Ec472 in F medium 3,802 42 3 8a

EH41in C medium vs Ec472 in C medium 5,823 15 82 41b, 35c

Caco2-EH41 vs Caco2-Control 21,116 79 12 NA

Caco2-Ec472 vs Caco2-control 20,960 127 9 NA

aEE transcripts in conditioned (C) medium

EE transcripts obtained for EH41b or for Ec472/01c in C medium.

https://doi.org/10.1371/journal.pone.0189613.t001
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suspension as the DNA template. The amplification conditions consisted in 30 cycles of 95˚C

for 30 s, (57–60)˚C (S2 Table) for 30 s and 72˚C for 1 min, with an initial denaturing step of

95˚C for 5 min and a final extension step of 72˚C for 5 min. After PCR, 5-μl aliquots of the

amplification products were electrophoresed in 1.5% agarose gels in 1×TAE buffer (40 mM

Tris, 20 mM acetic acid, 1 mM EDTA). The samples were stained with GelRedTM Nucleic

Acid Gel Stain (cat. 41003, Biotium, Hayward, CA) and DNA bands were visualized using UV

light. The 1 Kb Plus DNA Ladder (cat. 10787–018, Invitrogen) was used as molecular size

markers in all gels.

qPCR for microarray technical validation

Microarray expression data for bacterial strains or Caco-2 cells were validated through quanti-

tative real-time polymerase chain reaction (qPCR). Specific primers for all selected genes (S3

Table) were designed using the Primer-BLAST (Primer3 Input, version 0.4.0 and BLAST,

available at http://www.ncbi.nlm.nih.gov/tools/primer-blast/). All samples were amplified in

triplicate (technical replicates). Real time PCR amplifications were performed in Applied Bio-

systems StepOne Plus Real Time PCR System with StepOne software (Applied Biosystems,

Forrest City, CA, USA). All RNA samples were previously treated with DNAse and checked

for DNA contamination by PCR analysis.

Validation of STEC microarrays

Amplification reactions were performed in a 20 μL final volume containing 1X RT Enzyme

Mix and 1X RT-PCR Mix (Power SYBR Green RNA-to-CT 1-Step, Applied Biosystems, Carls-

bad, CA), 5 pmol of primers and 100 ng of total RNA. We used the following cycling parame-

ters: a RT step of 48o C for 30 min, an enzyme activation of 95˚C for 1 min followed by 40

cycles of 95˚C for 15 s and 60˚C for 1 min. In order to normalize qPCR reactions, rpoA was

included as reference gene. Relative gene expression was determined by the relative standard

curve method and presented as relative expression using rpoA as endogenous control for

STEC strains.

Validation of Caco-2 microarrays

Amplification reactions were performed in a 25 μL final volume containing 1X SYBR Green

mix (Quantitec SYBR Green PCR kit, QIAGEN, Hilden, DE), 10 pmol of primers and 2 μL

cDNA (1/10 dilution, synthesized from 1μg of total RNA). We used the following cycling

parameters: an initial hot start of 95˚C for 15 min followed by 50 cycles of 95˚C for 15 s and

60˚C for 30s. In order to normalize qPCR reactions, GAPDH was included as reference gene.

Relative gene expression was determined by the relative standard curve method and presented

as relative expression using GAPDH as endogenous control for Caco-2 infected by STEC

EH41 or by EC472 and for uninfected Caco-2.

Bacterial growth assessment for EH41 and Ec472/01

The bacterial growth was evaluated by absorbance readings at 550 nm (Multiskan MS Primary

EIA, Labsystems, MA) just before and after 3h of growth in C medium.

Scanning electron microscopy (SEM) for Caco-2 cells

After Caco-2 cell-STEC interaction, the cells exposed to bacteria and the uninfected controls

were gently washed 3 times with 1X phosphate buffered saline (PBS) and fixed with Karnovsky

fixative solution for at least 24 h at 4˚C. After fixation, cells were washed 3 times with 0.1 M
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cacodylate buffer (10 min) and post- fixed with 1% osmium tetroxide (prepared in the same

buffer) for 30 min. After being washed for 3 times with distilled water, preparations were dehy-

drated through a graded ethanol series (50%, 75%, 85%, 95%, and 100%). Subsequently, the

preparations were dried (critical point method), mounted on stubs and sputter coated with

gold. Specimens were then examined under SEM (QUANTA 250—FEI Company, Nether-

lands) at 12.5 kV.

Results

In this study (see Fig 1) we investigated the comparative global gene expression of two STEC

strains–EH41, reference strain isolated from a patient with HUS, and Ec472/01, isolated from

cattle feces–after bacterial growth in Caco-2 cells conditioned (C medium) or fresh media (F

medium). Another comparative analysis was performed for Caco-2 cells after 3h of in vitro
bacteria-host cell interaction. We obtained GCNs based on differentially expressed genes for

Caco-2 cells and for both STEC strains, as described below.

Transcriptional analysis of STEC EH41 and Ec472/01 growth in C and F

media

Our initial analysis aimed at investigating if enterocyte soluble mediators modify STEC global

gene expression. In order to accomplish this goal we performed a comparative analysis by

growing the two STEC strains in C or F medium for 3 hours. Comparative gene expression

analysis of STEC strains cultured in C or F medium revealed that 38 transcripts for EH41 and

53 transcripts for Ec472/01 are differentially expressed in C medium (Table 1). The biological

functions of these genes are listed in S4 and S5 Tables. Venn diagram analysis of these differen-

tially expressed transcripts (Fig 2) showed that only two transcripts (ECs1070 and ECs4328,

both functionally uncharacterized) are common between EH41 and Ec472/01 strains. Note-

worthy, none of these transcripts is a known or putative virulence factor. On the other hand, it

is well described that the expression of virulence factors is modulated by enterocyte mediators

Fig 2. Differential gene expression profiles for STEC strains. Venn diagram analysis for DE and EE

genes obtained from two comparisons: EH41 in C medium X EH41 in F medium or Ec472/01 in C medium X

Ec472/01 in F medium.

https://doi.org/10.1371/journal.pone.0189613.g002
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[16]. Therefore, our results indicate that HUS-associated STEC (EH41) and Ec472/01 strains

have their own “pre-exposure” differential transcriptomic profile.

Consequently, we conducted a comparison between EH41 and Ec472/01 exposed only to

the C medium. All differentially expressed (DE) and exclusively expressed (EE) transcripts

(Table 1) and their biological functions are listed in S6 Table. The functional profile analysis of

the DE and EE transcripts, except for hypothetical or unknown protein, are shown in Fig 3.

Almost half of the DE transcripts (49%) are involved in metabolic process (Fig 3A), whereas

33% of EE transcripts in EH41 codify prophage-derived genes and three genes are involved in

acid resistance (Fig 3B). Only seven Ec472/01 EE transcripts have a known biological function

(Fig 3C). Interestingly, the majority of DE transcripts are hypoexpressed in EH41 (S6 Table)

and are involved in fitness. Furthermore, we evaluated bacterial growth in C medium. The

EH41 strain showed a significant slow growth when compared with Ec472/01 (S1 Fig).

Gene co-expression networks (GCN) for EH41 and Ec472/01

This GCN analysis considered just the DE and EE genes obtained from the comparison

between the transcription profiles of EH41 and Ec472/01 strains grown in C medium. The two

networks were constructed considering only the transcripts codifying for known or putative

proteins: 103 transcripts for EH41 and 89 transcripts for Ec472/01 (Table 2, Fig 4). A list of the

most relevant hubs, i.e. those presenting high numbers of gene-gene links, and their biological

function appears in Table 3.

Fig 3. Functional profile analyses of DE and EE transcripts obtained from the comparison of EH41 X Ec472/

01 in C medium. Pie charts show: (A) the DE transcripts set; (B) the EE transcripts in EH41; (C) the EE transcripts in

Ec472/01. Functional categories are identified by roman numerals as follows: I, metabolic process; II, chaperone; III,

fimbrin/ outer membrane protein; IV, ion transport/ protein transport; V, transcription; VI, qin prophage/ prophage; VII,

acid resistance; VIII, transposase; IX, putative protein. The number of genes belonging to a particular functional

category is indicated between parentheses in each slice. Transcripts described as hypothetical or unknown proteins

are not represented in this figure.

https://doi.org/10.1371/journal.pone.0189613.g003

Table 2. Gene co-expression network characteristics for each group.

Network

Group No. nodes No. links Cut-off (|r|�)

EH41 96 737 0.90

Ec472 87 542 0.90

Caco2-EH41 83 650 0.94

Caco2-Ec472 113 684 0.99

Caco2-Control 135 528 0.98

https://doi.org/10.1371/journal.pone.0189613.t002
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EH41 network

The EH41 GCN (Fig 4A) revealed a major transcriptional module constituted by genes

exclusively expressed (EE) in STEC EH41 and containing most of the hubs in this network

(10 out of 16). This module presents positive interaction between its constituent EE genes

(diamond nodes) but negative interaction with the network’s DE genes (circle nodes).

Moreover, the EH41 hierarchical network (Fig 5) showed that the transcriptional regulators

dicA and dicC are the first and the second hierarchical genes in the EE transcriptional mod-

ule, here named dicA module. Moreover, dicC is linked, in the first level, with almost all the

EE genes (20 out of 23, where 8 are hubs), whereas dicA is linked with 16 EE genes, of which

nine are hubs, including dicC (these links are indicated by red lines in Fig 5B and 5C). Here

is important to mention that the genes dicA and dicC are part of the Qin prophage [17] and

that DicA is homologous to the virulence regulators RovA and SlyA [18, 19]. This issue will

be discussed further.

The list of hubs and their respective biological functions is presented in Table 3. The dicA
module encompasses 27 genes: 23 EE genes, of which nine are hubs, and four are DE genes, of

which only one is a hub. In this module seven EE hubs may be involved in bacterial virulence

(dicC, ECs1176, rusA, ECs1666, ydfZ, insA and insI) [20–22] and two EE hubs are associated

with acid stress adaptation to survive in the host (gadB and ECs2098) [23].

The second major module encompasses 24 DE genes, of which seven are hubs and only one

is an EE gene (ygbT). This EE hub codifies for a CRISP-associated protein related to antivirus

immunity and DNA repair [24, 25]. Three DE genes are also hubs in the Ec472/01 network:

adiA is involved in acid stress adaptation [26]; metQ is involved in ABC-type transporter in E

Fig 4. DE and EE gene co-expression networks (GCNs) for STEC strains. GCNs for EH41 and Ec472/01 are depicted in (A) and (B)

respectively. The most relevant hubs (high number of gene-gene links) are graphically represented by the proportionally larger nodes. Positive or

negative Pearson’s coefficients—indicating positive or inverse covariation between gene-pairs—are represented by gray or red lines

respectively. Nodes in red or green indicate hyper or hypo expressed genes, respectively. Circle or diamond nodes indicate DE or EE genes

respectively. Node borders in blue indicate hub genes; node borders in yellow indicate common hubs between the two GCNs.

https://doi.org/10.1371/journal.pone.0189613.g004
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coli [27]; and Z1902, which codifies for prophage head-tail adaptor. Two other hubs (ECs5114
and mdtE) are involved in bacterial survival in the host [28, 29]. The last hub, narI, codifies for

a membrane anchor subunit of NarGHI complex involved in electron transfer [30]. It is inter-

esting to note that only one DE hub, Z1902, is hyperexpressed in EH41.

Ec472/01 network

The Ec472/01 GCN (Fig 4B) has 15 hubs (Table 3). Ec472/01 network contains only one

major transcriptional module encompassing 43 genes (37 DE genes and six EE genes).

Only three out of 13 DE hubs appear to be involved in virulence: adiA, a common hub with

EH41 network, is involved in acid stress adaptation [26]; ECs1214, codes for an antirepres-

sor protein associated to a superinfecting STEC [46]; and Z3622, which is a phage-derived

gene [42]. Two out of six EE genes are hubs—cspA and ECs1592 –codifying, respectively,

for an RNA chaperone [39] and for a head portal protein. The remaining hubs are involved

Table 3. Hubs in EH41 and Ec472/01 networks.

Gene EH41 Ec472/01 Gene function

ECs1176a 26 NE host-nuclease inhibitor protein Gam; phage recombination [20]

gadBa 26 NE stomach acid resistence [23]

fecCa 25 NE transmembrane protein involved in the ferric citrate transport [31]

rusAa 25 NE endonuclease RUS; phage recombination [21]

ECs1666a 24 NE transposase; phage recombination [22]

ECs2098a 24 NE glutamate decarboxylase isozyme; acid stress adaptation [23]

insAa 22 NE transposase; phage recombination [32]

insIa 22 NE IS30 transposase; phage recombination [33]

dicCa 21 NE DNA-binding transcriptional regulator [34]

ygbT 24 NE CRISP-associated protein Cas1 [24, 25]

ydfZ 25 9 Selenoprotein; involved in survival in the host oxidative attack [35, 36]

mdtE 24 8 multidrug efflux transporter; increases multidrug resistance [29]

ECs5114 24 4 pH stress sensor; acid stress adaptation [28]

narI 22 11 membrane subunit of NarGHI complex involved in nitrate reduction [30]

metQ 23 21 DL-methionine transporter subunit [27]

Z1902 23 21 phage recombination [37]

adiA 21 21 biodegradative arginine decarboxylase [26, 38]

cspA NE 23 prevention of RNA secondary structure formation [39]

ECs1592 NE 22 head portal protein; bacteriophage DNA packaging machine

hycE 17 24 formate hydrogenlyase subunit 5; electron transfer [40]

hydN 17 23 electron transport protein HydN [41]

Z3622 18 22 recombinase; transposition of stx in E. coli [42]

appA 19 22 phosphoanhydride phosphorylase; phytase

cbpA 17 22 curved DNA-binding protein; stationary phase-specific nucleoid protein [43]

yjbQ 18 22 thiamin phosphate synthase [44]

ECs1591 11 21 prohead protease

hycG 10 21 hydrogenase 3 and formate hydrogenase complex, HycG subunit; electron transfer [40]

narJ 19 21 chaperone subunit of nitrate reductase; involved in respiratory process [45]

ECs1214 17 20 antirepressor protein [46]

aHubs in the dicA transcriptional module; number of links in bold indicates a hub gene in the network; NE: genes not expressed by STEC Ec472/01 or EH41

https://doi.org/10.1371/journal.pone.0189613.t003
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in various metabolic processes, such as electron transfer, amino-acid synthesis or

transcription.

PCR detection of the dicA module EE genes using a panel of STEC

O113:H21 strains

We used PCR for detecting the presence of nine EH41 EE genes—insI, ECs2098, dicA, dicC,

fecC, gadB, Ecs1176, insA and rusA—of the dicA module in a panel constituted by Ec472/01,

one Brazilian STEC strain isolated from beef meat and nine other Brazilian STEC strains iso-

lated from the animal reservoir (S1 Table). This analysis revealed that five genes (dicA, fecC,

Ecs1176, insA and rusA) are absent in all these strains. Two genes—ECs2098 and gadB—were

detected in all strains (Table 4).

Fig 5. Hierarchical structure of the EH41 network. Node hierarchical arrangement represents the main direction within a network (A). In (B) and

(C) the EE transcriptional module is displayed in detail. Links in red represent the first node connections, centered in dicA (B) or in dicC (C). Nodes

in red or green indicate hyper or hypo expressed genes, respectively. Circle or diamond nodes indicate DE or EE genes respectively. Node borders

in blue indicate hub genes; node borders in yellow indicate common hubs between EH41 and Ec472/02 GCNs.

https://doi.org/10.1371/journal.pone.0189613.g005
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Transcriptional analyses of Caco-2 cells after interaction with EH41 and

Ec472/01 STEC strains

Gene expression comparative analyses were performed for Caco-2 cells after 3h of interaction

with EH41 (Caco2-EH41) or with Ec472/01 (Caco2-Ec472). The comparison between

Caco2-EH41 or Caco2-Ec472 with Caco2-Control (no bacterial interaction) revealed 91 DE

GO (Gene Ontology)-annotated genes for Caco2-EH41 group and 136 DE GO-annotated

genes for Caco2-Ec472 group (Table 1). All these DE genes were analyzed through Venn dia-

gram. The result showed that 66 hyperexpressed genes and six hypoexpressed genes are com-

mon for both comparisons (S2 Fig). Consequently, the functional profiles for the DE genes of

Caco2-EH41 and Caco2-Ec472 were found to be very similar (S3 Fig).

GCN analysis of Caco-2 cells after interaction with STEC strains

Three gene co-expression networks were constructed for DE genes (Table 2): i) for Caco2-EH41

(Fig 6A); ii) for Caco2- Ec472 (Fig 6B); and iii) for Caco2-Control (Fig 7). The control network

was based on all DE genes obtained in the two former comparisons (155 genes, S2 Fig). A list of

the most relevant hubs according to the number of gene-gene links appears in Table 5.

Caco2-EH41 network

The network analysis revealed 21 hubs, all belonging to a single major transcriptional module.

All these hubs present many negative and positive gene-gene interactions, thus reflecting gene

expression assynchrony (Fig 6A). It is noteworthy that 13 out of 21 hubs are involved in innate

immunity. Eight of these hubs are involved in inflammatory response (TNF, SPPL2B, ZFP36,

NFKBIZ, PTN, CXCL3, CXCL2 and C11orf17) [47–53]. The hubs CLIC3 and TRIM15 are

respectively involved in macrophage activation [54] and immune signaling pathways [55].

Finally, three hubs are involved in apoptosis (CYR61 and TAGLN) [56, 57] or antiapoptosis

(TNFAIP3) [58].

Table 4. PCR gene detection in a panel of STEC O113:H21 strains.

PCR gene detectiona

Strain MLST Source insI ECs2098 dicA dicC fecC gadB Ecs1176 insA rusA

EH41b 820 HUS + + + + + + + + +

Ec472/01c ND Bovine feces + + - - - + - - -

226/1 846e Bovine feces + + - + - + - - -

Ec670/05 846e Bovine feces + + - - - + - - -

Ec254/01 997 Bovine feces - + - - - + - - -

Ec226/04 223d Bovine feces - + - - - + - - -

Ec503/05 ND Goat feces - + - - - + - - -

Ec182/04 ND Buffalo feces + + - + - + - - -

Ec624/05 ND Bovine feces + + - + - + - - -

Ec684/04 ND Bovine feces - + - - - + - - -

Ec253/02 997 Bovine feces - + - - - + - - -

Ec784 997 Beef meat - + - - - + - - -

aSymbols: (+) for positive or (-) for negative PCR product
bstrain EH41 express these genes
cstrain Ec472/01 does not express these genes

ND, not determined; same clonal group of the STEC strains isolated from an Argentine HUS-patientd and from a Germany patient with diarrheae [11]

https://doi.org/10.1371/journal.pone.0189613.t004
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Additionally, two other hubs could also be involved in immune response, COL1A2 and

THBS1. The first encodes a cellular matrix protein that can be stimulated through TLR4 by E.

coli and induces a chronic inflammatory state in murine colitis [59, 60]. The former codifies

for an adhesive glycoprotein and its deficiency is associated with decreased phagocytosis and

possibly bacterial clearance [61, 62]. The remaining six hubs are involved in cytoskeletal orga-

nization, signaling and cell growth or codifies a G protein-coupled receptor and transcription

factors. Two hubs—THBS1 and MAB21L2—are also hubs in Caco2-Ec472 network and RHOU
is likewise hub in Caco2-Control network (Table 5).

Caco2-Ec472/01 network

This network contains 25 hubs, all belonging to a single major transcriptional module. All

genes in this module present positive interaction, except for MAB21L2, involved in signaling

and cell growth: all their links have negative co-variation coefficient (Fig 6B). This GCN

Fig 6. DE gene co-expression network (GCN) for Caco-2 cells after interaction with STEC strains. GCNs for Caco-2 interacting with EH41

or with Ec472/01 are shown in (A) and (B) respectively. Hubs are graphically represented by the proportionally larger nodes. Positive or negative

Pearson’s coefficients are indicated by gray or red lines respectively. Nodes in red or green indicate hyper or hypo expressed genes, respectively.

Blue node border indicates a hub gene; yellow node border indicates a common hub between the two GCNs.

https://doi.org/10.1371/journal.pone.0189613.g006
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showed that half of the hubs (14 out 25) are involved in immune response. Six hubs are related

to inflammatory response (LTB, LIF, TNFRSF14,NFKBIE, IL23A and ICAM1) [63–69], two

are involved in autophagy (NCOA7 and ZC3H12A) [70, 71], and one in phagocytosis (THBS1)

[62]. Additionally, five hubs (BBC3, PLK3, EMP1, KLF6 and CFLAR) [57, 72–76] are associated

to apoptosis (Table 5 displays the detailed description of these hubs functions).

Other four hubs also have interesting features: three of these hubs are involved in cytoskele-

ton organization (CLIC5, RND1 and RND3) and one (ARL5B) codifies for a protein transport

regulator. In HeLa cells this protein is involved in Shiga toxin transport along the endosome to

Fig 7. DE gene co-expression network (GCN) for Caco-2 cells control group. Caco2-control network

was constructed considering all DE genes obtained from two comparisons: Caco-2 with EH41 X Caco-2

control and Caco-2 with Ec472/01 X Caco-2 control. Hubs (square nodes) are graphically represented by the

proportionally larger nodes. Positive or negative Pearson’s coefficient is indicated by gray or red lines

respectively. Nodes in blue, pink or purple indicate, respectively: DE genes present only in Caco-2 interacting

with EH41, or with Ec472/01 or common for the two groups. Node borders in green or red indicate hypo or

hyper expressed genes in the control group.

https://doi.org/10.1371/journal.pone.0189613.g007
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Golgi trafficking [77]. The remaining hubs are involved in other biological functions such as

signaling, metabolism and ubiquitination.

Caco2-Control network

The Caco2-Control network analysis (Fig 7) revealed that all hubs belong to a single major

transcriptional module and present positive gene-gene interactions. The majority of the hubs

(9 out of 11) are involved in cell growth control (seven hubs) and epigenetics (two hubs).

Other two hubs are related to regulation of cell morphology and ion transport (Table 5).

Caco-2 cells SEM images

Fig 8 shows SEM images of Caco-2 cells after their interaction with EH41 or Ec472/01 strains.

These images revealed that both strains are capable of inducing cell morphology alterations.

However, the interaction with EH41 leads to a severe microvilli loss (Fig 8B), whereas Ec472/

01 induced only modest microvilli loss (Fig 8C), but significant microvilli morphology change

(elongation, orientation) when compared to Caco-2 control cells (Fig 8A).

qPCR validation of microarray data

STEC group. Three hyperexpressed (phoA, phoE and EcS1174) and two hypoexpressed

(hycE and hycG) genes were selected for qPCR analysis. The fold-changes for each gene—com-

paring EH41 versus Ec472/01 groups’ average of relative gene expression—confirmed DNA

microarray gene expression results (S4 Fig).

Caco-2 cell group. The same experimental design was followed: three hyperexpressed

(BIRC3, CCL20 and ZC3H12A) and two hypoexpressed (PTN and STON1) genes were selected.

The fold-changes for each gene—comparing Caco2-EH41 versus Caco2-Ec472 groups’ average

of relative gene expression—confirmed DNA microarray gene expression results (S5 Fig).

Discussion

The association of O113:H21 STEC strains with hemolytic uremic syndrome (HUS) has been

reported in several countries [11]. In Brazil O113:H21 strains are commonly found in the ani-

mal reservoir but, so far, were not isolated from HUS patients [7, 8]. Interestingly, some Brazil-

ian O113:H21 strains and strains isolated from HUS patients in Argentina belong to the same

clonal group [11]. Several studies have been done in STEC strains isolated from animal and

environmental sources aiming at identifying HUS-related virulence genes and characterizing

the pathogenic potential of these strains. However there is no specific virulence genetic profile

that enables one to distinguish between the pathogenic and environmental strains [6, 11, 102].

In this study we were able to show genomic and phenotypic differences between two O113:

H21 STEC strains: EH41, a reference strain isolated from HUS patient in Australia, and

Ec472/01, isolated from cattle feces in Brazil. We also characterized the differential enterocyte

response after exposure to EH41 or Ec472/01.

First we investigated if Caco-2 cell soluble mediators could increase the expression of STEC

virulence genes in EH41 and Ec472/01 bacteria. Comparative global gene expression analyses

revealed, for both strains, that the expression of virulence genes was not significantly different:

only one per cent of the transcripts were differentially expressed. Furthermore, the majority of

these transcripts was not yet functionally characterized, as in EH41, or involved in metabolic

processes, as in Ec472/01 (S4 and S5 Tables). Comparatively, in EHEC, more than 1,400

genes–most of them related to virulence—were differentially expressed after culturing in

enterocyte conditioned medium [16]. These results indicate that EH41 and Ec472/01 virulence
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Table 5. Hubs in Caco-2 cells with EH41 or with Ec472/01 and control networks.

Number of linksa

Gene EH41 Ec472/01 CT Gene biological function

C11orf17 34 9 10 aliase AKIP1; involved on the NF-kappa-B activation cascade [51]

TNFd 33 20 4 codifies for proinflammatory cytokines family [78]

CXCL3d 32 23 15 codifies for chemoatractant for neutrophils; involved in inflammation [47]

CXCL2d 31 14 7 codifies for chemoatractant for neutrophils; involved in inflammation [50]

SPPL2B 31 0 2 involved in cytokine expression in the innate and adaptive immunity pathways [49]

ZFP36 31 0 4 negative regulator of cytokine production [53]

NFKBIZ 29 9 11 involved in induction of inflammatory genes activated through TLR/IL-1 receptor signaling [48]

PTN 28b 1 12 encodes a pleiotrophin; induces the production of inflammatory cytokines, including TNF-alfa, IL-1b and IL-6 [52]

COL1A2 30b 12 13 encodes the pro-alpha2 chain of type I collagen [60]

TRIM15 28 18 6 a member of the tripartite motif (TRIM) family; involved in regulation of immune signaling pathways [55]

THBS1 33 29 0 adhesive glycoprotein [61]; involved in phagocytosis [62]

CLIC3 30b 0 6 CLIC family proteins have been associated to macrophage activation [54]

CYR61 31 0 15 Involved in apoptosis [56]

TAGLN 30 11 2 overexpression of TAGLN dismishes cell proliferation and improves cell apoptosis in colorectal carcinoma cells [57]

TNFAIP3d 30 8 15 A20 (aliase), major antiapoptotic protein (via TNF) in the intestinal epithelium [58]

RHOU 31 0 18 involved in the regulation of cell morphology and cytoskeletal organization [79, 80]

MLN 31 0 12 involved in the regulation of interdigestive gastrointestinal motility [81, 82]

GPR111 30 0 2 members of the superfamily of human G protein-coupled receptors

MAB21L2 29 24 1 involved in cell growth

MAFF 33 17 13 small MAF transcription factor inducted by interleukin 1 beta (IL1B) and a weaker upregulated by TNF [83]

TBX3 32 0 3 transcriptional factor

LTB 4 28 2 codifies for cytokine that binds to LTBR/TNFRSF3; involved in cytokine production [66, 68]

LIFd 0 28 0 encodes a pleiotropic cytokine

TNFRSF14 0 26 4 Several members of the TNFSF are closely associated with inflammatory bowel disease [67]

ICAM1d 25 24 16 involved in innate immune response induced by enteroinvasive bacteria [63, 64]

IL23A 0 24 12 codifies for cytokine; induced by LPS [69, 84]

NFKBIE 0 24 3 codifies for a protein belonging to NF-kappaB inhibitors proteins family [65]

BBC3 0 29 9 aliase PUMA; encodes a member of the BCL-2 family involved in apoptosis [76]

PLK3 13 27 13 involved in apoptosis and stress responses [75]

EMP1 0 27 4 involved in apoptosis and cell adhesion [74]

KLF6 0 27 15 involved in apoptosis; has been shown to be induced by bacterial toxins [72]

CFLARd 2 25 2 aliase CASP8AP1; antiapoptosis regulator protein; acts as an inhibitor of TNFRSF6 mediated apoptosis [73]

RND3 0 31 12 negative regulator of cytoskeletal organization [85]

CLIC5 0 29 0 Chloride intracellular channel 5; cytoskeleton organization [86]

RND1 15 25 0 controls rearrangements of the actin cytoskeleton [87]

NCOA7 26 30 13 involved in human autophagy system [70]

ZC3H12A 4 28 7 Regnase-1 or MCPIP1 (aliases); involved in inducing and suppressing inflammatory responses [71]

ARL5B 7 25 10 protein transport regulator—including STX—along the endosome to Golgi trafficking in HeLa cells [77]

CYP2W1 0 30 1 involved in catalytically activate compounds to cytotoxic products [88]

ARRDC3 11 24 12 Ubiquitination process [89]

F3 3 27 5 F3 initiates the blood coagulation cascades

LRP5L 27 24 14 Codifies a low density lipoprotein; involved in signal transduction [90]

CCDC68 0 26 3 colorectal tumor associated protein [91]

C10orf10 0 27 13 chromosome 10 open reading frame 10; aliase DEPP, Fseg

DUSP5P 0 1 22 hyperexpressed in tumor cells [92]

PPP1R15A 0 10 19 aliase GADD34;hyperexpressed in human colon epithelial cells [93]

(Continued )
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genes are not modulated by soluble mediators, i.e. their virulence phenotypes were largely set

before infecting the human host.

Therefore we conducted a comparative transcriptomic analysis between EH41 and Ec472/

01 cultured in C medium. The results revealed that these two strains have different gene

expression profiles. We found important differences in these profiles: i) 82 out of 97 DE tran-

scripts are hypoexpressed in EH41 and almost half of these genes are involved in metabolic

process (Figs 2 and 3); ii) in EH41 10 out of 29 EE genes are prophage-derived genes; iii) in

Ec472/01 only seven out of 35 EE genes are functionally characterized an all related to meta-

bolic or transcriptional control processes (S6 Table).

It is interesting to note that in EH41 six of the EE genes belong to the Qin prophage [17]:

dicA, dicC, relE, ynfN, and two not yet functionally characterized. It is well known that cryptic

prophages provide multiple adaptative advantages for the bacteria, such as antibiotic resis-

tance, oxidative and acid stresses tolerance, enabling survival in adverse environmental condi-

tions [103]. The dicA is an E. coli transcriptional regulator acting as a temperature sensor

repressor for bacterial growth and, when mutated, is complemented by the adjacent gene dicC
[34, 104]. Additionally, DicA shares significant amino acid sequence similarity with the DNA-

Table 5. (Continued)

Number of linksa

Gene EH41 Ec472/01 CT Gene biological function

FZD10 0 4 18c hyperexpressed in colorectal carcinoma [94]

GADD45B 0 7 21 hyperexpressed in colorectal carcinoma [95]

DUSP5 0 1 19 hyperexpressed of DUSP5 suppress the growth of several types of human cancer cells [96]

TMEM49 1 7 18 aliase VMP1; VMP1-dependent autophagy in colorectal cancer cells [97]

EGR1 0 1 21 histone acetyltransferase binding protein family; involved in claudin-3 transcription, a tight junction protein, in Caco-2

cells [98]

HIST1H3I 0 12 19 a member of the histone H3 family [99]

SNF1LK 0 14 22 Salt-inducible kinase 1 belongs to the AMP-activated protein kinase (AMPK) family [100]

GPR109B 2 17 23 G protein-coupled receptor 109B; involved in the activation of ERK1/2 MAP kinase pathway [101]

aNumber of links in bold indicates a hub gene in the network
bgenes hypoexpressed in Caco-2 cells with EH41
cgenes hyperexpressed in Caco-2 control group
dTNF signaling pathway (KEGG, map04668)

https://doi.org/10.1371/journal.pone.0189613.t005

Fig 8. SEM visualization of Caco-2 cells after 3h of interaction with STEC strains. The images depict the Caco-2 cells

control (A) and cells interacting with EH41 (B) or Ec472/01 (C).

https://doi.org/10.1371/journal.pone.0189613.g008
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binding domains of RovA and SlyA, which are regulators of pathogenic genes in Yersinia and

Salmonella, respectively [17]. These two proteins regulate a wide range of physiological pro-

cesses involved in survival, stress adaptation, and virulence [18, 19]. In Salmonella, SlyA regu-

lates virulence factors necessary for environmental adaptation and survival in mice [105]. In E.

coli SlyA induces a cryptic hlyE gene (aliase clyA), which encodes for hemolysin E [106].

Hierarchical analysis of the EH41 network showed that dicA is the first hierarchical gene in

the EE module and encompasses 22 out of the 24 EE genes in the network (Fig 5). The dicA
transcriptional module is distinctive of the EH41 network and seems to be very important

since it encompasses 11 out of the 16 network hubs. Moreover, most of these hubs are pro-

phage-derived genes, including dicC, or involved in acid stress adaptation, what indicates that

the dicA module could well be related to EH41 virulence.

The other two modules in EH41 network (Fig 4A) encompass only DE genes—many of them

involved in metabolic process. The majority of these genes are hypoexpressed in EH41, except

for the hub Z1902, which is a prophage-derived gene. It is interesting to note that metQ—also a

hub in Ec472 network, but hypoexpressed in EH41 –codifies for a DL-methionine transporter

subunit and may be involved in bacterial growth efficiency. Streptococcus pneumoniae metQ and

metEF mutants show a decreased growth in methionine restricted conditions [107]. Here we

confirmed that EH41 has a diminished growth in C medium when compared with Ec472/01

(S1 Fig).

Altogether, EH41 GCN analysis indicates that dicA positively regulates other EE genes

(probably virulence genes) in the dicA transcriptional module. Here it is worth to note that the

dicA, B, C gene family exerts a negative regulation on bacterial growth [34, 104]. These two

regulatory roles of dicA could represent an adaptation for improving long-term bacterial sur-

vival in the enteric environment. Indeed, there are reports of long-term STEC shedding, i.e.

well after the symptoms are resolved. The median duration of shedding has been shown to be

20 days; however, some patients were STEC PCR-positive up to 9 months after symptoms dis-

appearance [108, 109].

Ec472/01 network presented just six EE genes which are scattered in a few transcriptional

modules (Fig 4B). In this network only two out of 15 hubs are EE genes, but all these hubs

belong to a single main transcriptional module. As mentioned before, most of the DE genes

are hyper-expressed in Ec472/01 and probably involved in bacterial growth (S6 Table). Five

hubs may be related to virulence: two are phage-derived genes, one is involved in acid stress

adaptation, one codifies for a recombinase and the last codifies for an antirepressor protein.

Recombinase and antirepressor proteins are associated with acquisition and expression of bac-

teriophage-virulence genes [42, 46, 110].

Our results clearly indicate that dicA transcriptional module, and especially the dicA gene,

contributes to the distinctive phenotypic difference between EH41 and Ec472/01. Hence, we

investigated the presence of dicA and other eight EH41 EE hub genes in a STEC panel. We

selected STEC strains from different clonal groups, including strains belonging to same clonal

group of the STEC strains isolated from an Argentine HUS-patient and from a German patient

with diarrhea [11]. The results revealed that all STEC strains isolated from bovine, goat or buf-

falo feces, or from beef meat, lack dicA and four other genes present in EH41 (Table 4). This

result indicates that STEC strains isolated from animal reservoirs do not have the complete

gene repertoire to cause severe diseases, such as HUS. Hereafter, it would be necessary to

extend this investigation to other STEC strains isolated from patients with HUS, hemorrhagic

colitis, and diarrhea, as well as from animal and environmental sources. In this study, we could

not test other O113:H21 STEC strains isolated from patients because: i) this serotype has not

yet been isolated from HUS patients in Brazil, and ii) nowadays for biosafety reasons HUS-

associated STEC strains from other countries is hard to obtain. Nevertheless, it is utterly
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important to undergo this kind of investigation in order to provide biomarkers for identifying

STEC strains capable of causing HUS and related severe diseases.

The Caco-2 cell response after three hours of interaction with STEC was investigated by

GCN analysis for DE genes. Distinct enterocyte responses to EH41 and Ec472/01 strains in DE

networks are clearly evidenced by the pronounced differences in network topology (Fig 6A

and 6B). Caco2-EH41 GCN reflects global gene expression dysregulation, since this network

has many positive and negative gene-gene covariation coefficients in the major module. Con-

versely, in Caco2-Ec472/01 and Caco2-Control networks most of the nodes have positive links

and just a few genes–corresponding to the nodes at the transcriptional module border or

nodes connecting two modules—have negative links. This is what is expected in normal cell

functioning or just before the health-disease transition [111–113]. Nodes with positive links

tend to cluster together, while nodes with negative links usually act as bridges between clusters

of positively linked nodes [112]. This result suggests that EH41 is capable to induce, after three

hours of cell-bacteria interaction, an intense genomic dysregulation in Caco-2 cells.

The majority of the hubs in Caco2-EH41 GCN were found to be related to inflammatory/

innate immune response (Table 5). It is possible to infer, based on KEGG data, that several

hubs in this network are involved in the activation of inflammatory response and neutrophil

recruitment via TNF signaling pathway (Table 5). Actually, CXCL2 and CXCL3 (aliase GROg)

codify for chemoattractants involved in neutrophil migration [47, 50] and, TNF, an inflamma-

tory cytokine. Additionally the hub PTN encodes a pleiotropin and induces production of

inflammatory cytokines, such as TNF, IL-1b and IL-6 [52]. In mice, CXCL2 is involved in neu-

trophil migration into the kidney after exposure to EHEC O157:H7 (E. coli possessing stx/eae
genes and associated with HUS) virulence factors [50]. The increased production of neutrophil

chemoattractants such as IL-8, Stx-mediated ERK1/2 activation promotes inflammation and

the systemic uptake of Stx, leading to the onset of HUS [114]. Moreover, it was described that

flagellin is the major EHEC determinant contributing to chemokine production in human

intestinal epithelium [115], suggesting that Stx is not a major participant in promoting intesti-

nal inflammation. It is possible that in EH41 Stx exacerbates epithelial inflammation induced

firstly by other virulence factors.

This scenario did not occur in Caco-2 cells during interaction with Ec472/01. Only one

third of the hubs are involved in innate immunity and enrichment analysis based on KEGG

molecular pathways showed that three hubs are related to TNF signaling pathway: i) cell adhe-

sion (ICAM1); ii) inflammatory cytokine (LIF) and; iii) CFLAR that codifies an apoptosis

inhibitor regulator [116]. Additionally, both networks have hubs involved in cystoskeletal

organization.

Scanning electron microscopy (SEM) images revealed microvilli loss after Caco-2 interac-

tions with EH41 or with Ec472/01 (Fig 8). Epithelial cell morphology alterations are clearly

more severe after exposure to EH41, including brush border and microvilli destruction.

Microvilli establish an electrostatic barrier to microbial adhesion [117] and, therefore,

EH41-induced microvilli destruction may contribute to the enhanced persistence of this strain

in the enteric environment.

There is evidence that acute inflammation plays a role in the development of HUS. Patients

with HUS demonstrate a rise in c-reactive protein, neutrophilia and an increase in circulating

proinflammatory cytokines, indicating that the impact of hemorrhagic colitis may be impor-

tant for the subsequent development of severe complications, such as HUS and encephalopa-

thy [78]. Moreover, Stx probably is not the central factor involved in enteric inflammation, but

together with others bacterial effectors contribute to promote inflammation and neutrophil

migration.
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In conclusion, we used a gene co-expression network (GCN) analysis to investigate two

STEC strains—one associated to HUS (EH41) and another isolated from cattle (Ec472/01)—

and also the enterocyte response after bacterial interaction. Comparative STEC GCN analysis

revealed that STEC HUS-associated has a distinctive dicA transcriptional module and majority

of the genes in others modules—possible related to bacterial growth—are hypoexpressed. This

fact may be related to bacterial adaptation to survive for long period in intestinal environment

and consequently cause severe disease in human. The PCR detection of nine hub genes belong-

ing to dicA module in EH41 network indicated that STEC strains isolated from animal reser-

voirs could not have complete gene repertoire to cause severe disease, such as HUS. Moreover,

comparative Caco-2 cells GCN analysis indicated that STEC HUS-associated induces pro-

nounced inflammation response and gene network dysregulation. Finally, dicA and other four

genes (fecC, insA, rusA and ECs1176) may be used as molecular markers to distinguish between

HUS-associated O113:H21 STEC strains and other strains isolated from animal or environ-

mental sources. This characterization is important since some O113:H21 STEC strains isolated

from animal sources in Brazil belong to the same clonal group of STEC strains isolated from

Argentine HUS-patients or from animal sources.
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(TIF)
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with Ec472/01 X Caco-2 control; (B) Venn diagram analysis of hyper and hypo expressed
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(TIF)

S3 Fig. Functional profile analyses of DE genes for Caco-2 cells. Pie charts of DE genes
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with Ec472/01 X Caco-2 control (B). Functional categories are identified by roman numerals

as follows: I, actin binding/ actin filament/ cell-cell adhesion; II, apoptosis/ autophagy/ ubiqui-

tination; III, growth factor; IV, immune response/ cytokine/ chemokine; V, inflammatory

response; VI, metabolic process; VII, molecule transport/ ion transport; VIII, protein binding/
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boxplots representing DNA microarray expression values for five selected genes in EH41 (cir-

cle) and in Ec472/01 (triangle) groups. In (B) are shown qPCR expression fold change boxplots

for the same genes in EH41 or Ec472/01 groups.
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S5 Fig. qPCR validation DNA microarray data for Caco-2 cells. In (A) are depicted the box-

plots representing DNA microarray expression values for five selected genes in Caco-2 cells

interacting with EH41 (circle) or Ec472/01 (triangle) and control groups (square). In (B) are

shown qPCR expression fold change boxplots for the same genes in those three groups.

(TIF)
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