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Context: There is great interindividual variability in the response to recombinant human (rh) GH
therapy in patients with Turner syndrome (TS). Ascertaining genetic factors can improve the ac-
curacy of growth response predictions.

Objective: The objective of the study was to assess the individual and combined influence of
GHR-exon 3 and �202 A/C IGFBP3 polymorphisms on the short- and long-term outcomes of rhGH
therapy in patients with TS.

Design and Patients: GHR-exon 3 and �202 A/C IGFBP3 genotyping (rs2854744) was correlated
with height data of 112 patients with TS who remained prepubertal during the first year of rhGH
therapy and 65 patients who reached adult height after 5 � 2.5 yr of rhGH treatment.

Main Outcome Measures: First-year growth velocity and adult height were measured.

Results: Patients carrying at least one GHR-d3 or �202 A-IGFBP3 allele presented higher mean
first-year growth velocity and achieved taller adult heights than those homozygous for GHR-fl or
�202 C-IGFBP3 alleles, respectively. The combined analysis of GHR-exon 3 and �202 A/C IGFBP3
genotypes showed a clear nonadditive epistatic influence on adult height of patients with TS
treated with rhGH (GHR-exon 3 alone, R2 � 0.27; �202 A/C IGFBP3, R2 � 0.24; the combined
genotypes, R2 � 0.37 at multiple linear regression). Together with clinical factors, these genotypes
accounted for 61% of the variability in adult height of patients with TS after rhGH therapy.

Conclusion: Homozygosity for the GHR-exon3 full-length allele and/or the �202C-IGFBP3 allele are
associated with less favorable short- and long-term growth outcomes after rhGH treatment in
patients with TS. (J Clin Endocrinol Metab 97: E671–E677, 2012)
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Recombinant human (rh) GH is an approved therapy to
improve final height of patients with Turner syn-

drome (TS), a common cause of short stature (1). Typi-
cally, patients with TS exhibit considerable interindi-
vidual variability regarding short- and long-term growth
responses to rhGH therapy (2–5). Prediction models of
responses to rhGH based on clinical parameters had lim-
ited capacity to explain this variability in TS as well as in
other rhGH-treated growth disorders (6), suggesting that
further parameters, such as genetic factors, may be missing
from current models (4).

A meta-analysis has demonstrated that GH-deficient
(GHD) and non-GHD children homozygous or heterozy-
gous for the growth hormone receptor (GHR) exon 3 de-
leted (GHRd3) isoform had slightly better short-term
growth outcomes after rhGH therapy than children ho-
mozygous for the full-length (fl) GHR isoform (GHRfl)
(7). Three studies analyzed this polymorphism in patients
with TS concerning the first-year growth response to
rhGH treatment, without reproducible results (8–10),
whereas only one study analyzed the influence of the
GHR-exon 3 deleted isoform on final height (8). Addi-
tionally, a single-nucleotide polymorphism (SNP) located
at position �202 of the IGF binding protein (IGFBP)-3
promoter region (rs2854744) has also been involved in
rhGH pharmacogenetics of growth hormone deficiency
(11) and children born small for gestational age (12).

In comparison with other non-GHD indications of
rhGH therapy, TS is a more homogeneous cause of growth
impairment and, consequently, constitutes a better model
to test the influence of genetic variants on the rhGH
growth response. Thus, the aim of this study was to assess
the individual and combined influence of GHR-exon 3
and �202 A/C IGFBP3 polymorphisms on the short- and
long-term outcomes of rhGH therapy in a large group of
patients with TS.

Patients and Methods

Subjects
The study protocol was approved by the Hospital Ethics

Committee, and informed consent was obtained from all patients
or their parents before starting the molecular studies. One hun-
dred twelve patients with TS were selected using the following
criteria: 1) the presence of a karyotype containing a missing or a
structurally aberrant X chromosome; 2) rhGH treatment on a
daily schedule, and 3) patients remaining prepubertal through-
out the first year of therapy. First-year growth velocity was de-
termined after an observation period of 9–15 months. In addi-
tion, adult height was analyzed after 5 � 2.5 yr of rhGH
treatment in 65 patients. Adult height was defined by a docu-
mented growth velocity less than 1 cm/yr during the last 12
months. Patients were evaluated at baseline and every 4 months

during rhGH treatment. Evaluations were performed at the same
period of the day and included measurements of weight (measured
with a digital scale), standing height (mean of three measurements
on a stadiometer) expressed in centimeters, and SD scores (SDS) for
sex and age (13). Body mass index (BMI) was calculated (weight/
height2) and expressed as SDS (14). Target height was calculated
[(father’s height � mother’s height � 13 cm)/2] and expressed as
SDS. Left hand and wrist x-rays for bone age (BA) determination
was assessed by the method of Greulich and Pyle (15).

Hormone assays
IGF-I levels were obtained at the start of treatment and near

the end of the first year of rhGH therapy in 80% of the patients.
IGF-I was measured by RIA after ethanol extraction (Diagnostic
Systems Laboratories, Webster, TX) (73% of patients) or by
chemiluminescence assays (IMMULITE; Diagnostic Products
Corp., Los Angeles, CA) (27% of patients). IGFBP-3 levels were
obtained at the start of treatment and near the end of the first year
of rhGH therapy in 60% of the patients. IGFBP-3 was measured
by immunoradiometric assay (Diagnostic Systems Laboratories)
(66% of the patients) or by chemiluminescence assays (IMMU-
LITE) (34% of the patients). IGF-I and IGFBP-3 levels were
expressed as SDS for age and sex according to reference values
provided by the respective assay kits.

Molecular studies
Genomic DNA was isolated from peripheral blood leuko-

cytes by standard methods from all patients. The frequency of
GHR transcript variants regarding the presence (GHRfl) or ab-
sence (GHRd3) of exon 3 was tested in all patients using a pre-
viously described multiplex PCR assay (16, 17). The polymor-
phism �202 A/C IGFBP3 (rs2854744) was genotyped by allelic
discrimination in a Real Time 7500 system (Applied Biosystems,
Foster City, CA) equipment using specific probes and primers
(assay identification 186389191-1, TaqMan SNP genotyping
assay; Applied Biosystems) according to the manufacturer’s in-
structions. Ten percent of all samples were randomly regeno-
typed for quality control. The agreement of the genotypes de-
termined by the blinded quality control samples was 100%.

Statistical analysis
Qualitative variables are listed as frequencies and percent-

ages, whereas quantitative variables are shown as mean � SD.
Patients were compared by genotype relative to clinical and hor-
monal characteristics. The short-term response to rhGH was
evaluated by growth velocity in the first year of treatment. The
long-term response to rhGH was assessed by adult height SDS
and adult height SDS adjusted for target height SDS. One-way
ANOVA followed by a Tukey test was used for comparisons
according to the additive model, whereas the t test was used for
comparisons according to the dominant model. Numerical vari-
ables that did not demonstrate parametric distribution were an-
alyzed by Kruskal-Wallis one-way ANOVA on ranks or Mann-
Whitney rank sum test. Nominal variables were compared by a
�2 or Fisher exact test, as appropriate. To assess whether genetic
variants had independent prognostic significance for outcome,
we performed single- followed by multiple-regression analyses
adjusting for the established influential factors. The evaluated
clinical factors included karyotype, birth length and weight,
chronological age, BA, height, BMI at the start of treatment,
target height, maternal and paternal height, induced or sponta-
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neous puberty, age and height at the start of puberty, rhGH doses,
and duration of treatment. A P � 0.05 was considered statistically
significant. All statistical analyses were performed by SigmaStat for
Windows (version 3.5; SPSS, Inc., San Rafael, CA).

Results

Patients’ characteristics and genotyping
distribution

At the start of rhGH therapy with a mean dose of 48
�g/kg � d, the patients with TS (n � 112) had a chrono-
logical age of 11.2 � 3.8 yr, bone age delay (mean BA of
9.0 � 3.1 yr), and a mean height SDS of �3.2 � 1.1. The
onset of puberty, induced in 92 and spontaneous in 20
patients, was at 14.3 � 2.4 yr, and 65 patients achieved
adult height (mean height SDS of �2.0 � 1.0) after 5.0 �
2.5 yr of rhGH treatment.

All patients were genotyped for GHR-exon 3 [genotype
distribution: 53.6% (fl/fl); 37.5% (fl/d3); and 8.9% (d3/
d3)] and �202 A/C IGFBP3 polymorphism [genotype dis-
tribution: 17% (A/A); 48.2% (A/C); and 34.8% (C/C)].
The genotype distributions were in Hardy-Weinberg equi-
librium. Genotypic groups were similar concerning karyo-
type distribution, chronological and bone ages at the start

of treatment, basal BMI, parental height, the frequency of
spontaneous or induced puberty, age at puberty onset,
mean rhGH dose, and duration of therapy (Tables 1 and
2). However, patients homozygous for GHR-fl allele and
for �202 C-IGFBP3 allele had lower basal height SDS
than patients carrying GHR-d3 and �202 A-IGFBP-3
alleles, respectively, at the start of therapy (Tables 1 and
2). Patients homozygous for the �202 C-IGFBP3 allele
also had IGFBP-3 levels on average �1.0 SDS lower [95%
confidence interval (CI) �1.5 to �0.5; P � 0.001] than
carriers of at least one �202 A-IGFBP-3 allele.

Clinical correlations

Short-term growth response
Patients homozygous for the GHR-fl allele demon-

strated lower growth velocity in the first year of rhGH
treatment when compared with those patients with at least
one GHR-exon 3 deleted allele (Table 1). As a group,
patients with the GHR d3/* genotype had growth velocity
on average 1.4 cm/yr higher than those with GHR fl/fl
genotype (95% CI 0.7–2.0 cm/yr; P � 0.001).

Similarly, patients homozygous for the �202 C-IGFBP3
allele presented lower growth velocity in the first year of

TABLE 1. Clinical and hormonal characteristics of 112 patients with TS grouped according to GHR-exon 3 genotype

GHR-exon 3 genotype P

d3/d3 fl/d3 fl/fl d3/*
d3/d3 vs. fl/d3

vs. fl/fla
d3/* vs.

fl/flb

Number of patients for short-term outcomes 10 42 60 52
Karyotype 45,X 40% 54% 50% 50%
Target height SDS �0.5 � 0.8 �0.6 � 0.8 �0.9 � 0.8 �0.6 � 0.8 ns ns
Chronological age at the start of therapy (yr) 12 � 3.2 11 � 3.6 12 � 3.9 11 � 3.5 ns ns
BA at the start of therapy (yr) 10 � 2.7 9 � 3.1 9 � 3.1 9 � 3.1 ns ns
Height SDS at the start of therapy �3.0 � 0.7 �3.0 � 1.0 �3.5 � 0.8 �3.0 � 0.9 0.012c 0.002
BMI SDS at the start of therapy 0.8 � 0.6 0.5 � 1.2 0.6 � 1.1 0.5 � 1.1 ns ns
Mean rhGH dose (�g/kg � d) 48 48 48 48 ns ns
First year growth velocity (cm/y) 7.8 � 1.0 7.7 � 1.7 6.3 � 2.0 7.7 � 1.6 �0.001d �0.001
IGF-I SDS before rhGH therapy �0.5 � 1.4 �0.1 � 1.6 �0.6 � 1.2 �0.1 � 1.6 ns ns
IGF-I SDS after first year of rhGH therapy 1.5 � 1.5 1.9 � 1.4 1.4 � 1.7 1.8 � 2.0 ns ns
IGFBP-3 SDS before rhGH therapy �0.4 � 1.0 0.2 � 1.5 �0.2 � 1.1 0.2 � 1.4 ns ns
IGFBP-3 SDS after first year of rhGH therapy 0.7 � 1.0 1.0 � 1.5 0.6 � 1.0 1.0 � 1.4 ns ns
Number of patients for long-term outcomes 9 22 34 31
Spontaneous:induced puberty 1:8 5:17 4:30 6:25 ns ns
Chronological age at onset of puberty (yr) 14 � 2.4 14 � 1.7 15 � 2.7 14 � 1.9 ns ns
rhGH therapy before onset of puberty (yr) 3.0 � 2.0 4.0 � 2.4 4.0 � 2.8 4.0 � 2.6 ns ns
Duration of rhGH therapy (yr) 4.0 � 0.9 5.1 � 2.6 5 � 2.4 4.8 � 2.4 ns ns
Adult height SDS �1.2 � 0.9 �1.4 � 0.6 �2.5 � 1.0 �1.4 � 0.7 �0.001e �0.001
Adult height-target height SDS �0.7 � 1.3 �0.8 � 0.7 �1.4 � 1.2 �0.7 � 0.9 ns 0.01
Height gain SDS 1.6 � 1.2 1.1 � 1.2 0.7 � 1.5 1.2 � 1.2 ns ns

d3/* indicates combined fl/d3 and d3/d3-GHR genotypes. ns, Not significant.
a One-way ANOVA.
b t test.
c Tukey test: d3/d3 vs. fl/fl � ns; d3/d3 vs. fl/d3 � ns; fl/d3 vs. fl/fl � ns.
d Tukey test: d3/d3 vs. fl/fl � P � 0.05; d3/d3 vs. fl/d3 � ns; fl/d3 vs. fl/fl � P � 0.05.
e Tukey test: d3/d3 vs. fl/fl � P � 0.05; d3/d3 vs. fl/d3 � ns; fl/d3 vs. fl/fl � P � 0.05.
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rhGH therapy when compared with those carrying at
least one �202 A-IGFBP3 allele (Table 2). The �202 A/*
IGBFP3 genotype group had a growth velocity on average
0.8 cm/yr higher than the �202 C/C-IGFBP3 group (95%
CI 0.05–1.6 cm/yr, P � 0.037). There was a significant
relationship between �202 A/*-IGFBP3 group and cir-
culating IGFBP-3 levels at baseline (IGFBP-3 SDS 0.2 �
1.3 for the �202 A/*-IGFBP3 group and �0.8 � 1.0 for
the �202-C/C-IGFBP3 group; P � 0.001) and after the
first year of rhGH treatment (IGFBP-3 SDS 0.9 � 1.3 for
the �202 A/*-IGFBP3 group and 0.4 � 1.0 for the �202-
C/C-IGFBP3 group; P � 0.039).

Combined analysis showed that GHR-exon 3 and �202
A/C IGFBP3 genotypes had an interactive influence on the
first year growth velocity (Table 3). Patients with TS pre-
senting the combination of the two favorable genotypes
(GHR-exon 3 d3/* � �202 A/* IGFBP3) had first-year
growth velocity on average 1.8 cm/yr (95% CI 1.0–2.6 cm/
yr,P�0.001)higherthanindividualswithunfavorablecom-
bined genotypes (GHR-exon 3 fl/fl � �202 C/C IGFBP3),
whereas patients with intermediate genotypes (fl/fl � A/* or
d3* � C/C) had in-between values (Table 3).

Multiple linear regressions adjusting for other clinical
variables showed that GHR-exon 3 genotype was an in-

dependent prediction variable for first-year growth veloc-
ity. Together with chronological age (P � 0.001) and basal
BMI SDS (P � 0.018) at onset of rhGH therapy, GHR-
exon 3 genotype (P � 0.001) explained 40% of first-year
growth velocity variability. There was no significant in-
crement on first-year growth velocity prediction after add-
ing �202 A/C IGFBP3 polymorphism (R2 � 0.41 with
and R2 � 0.40 without the inclusion of �202 A/C IGFBP3
genotypes).

Long-term growth response
The positive influence of the GHR-d3 and �202 A-

IGFBP3 alleles noted on first-year growth velocity was
also observed on adult height of patients with TS after
rhGH therapy, with or without adjustment for target
height (Tables 1 and 2). Patients carrying at least one
GHR-d3 allele were 1.1 SDS (95% CI 0.7–1.5, P � 0.001)
taller than those homozygous for the GHR-fl allele (Table
1). Carriers of at least one �202 A-IGFBP3 allele were 1.0
SDS (95% CI 0.5–1.5, P � 0.001) taller than those ho-
mozygous for the �202 C-IGFBP3 allele (Table 2).

Combined analysis including GHR-exon 3 and �202
A/C IGFBP3 genotypes demonstrated that they had an
independent and interactive influence on adult height. De-

TABLE 2. Clinical and hormonal features of 112 patients with TS grouped according to �202 A/C IGFBP3 genotype

�202 A/C IGFBP3 genotype P

A/A A/C C/C A/*
A/A vs. A/C

vs. C/Ca
A/* vs.

C/Cb

Number of patients for short-term outcomes 19 54 39 73
Karyotype 45,X 57% 48% 56% 51%
Target height SDS �0.5 � 0.6 �0.9 � 0.8 �0,8 � 0.9 �0.8 � 0.8 ns ns
Chronological age at the start of therapy (yr) 11 � 3.5 11 � 3.8 11 � 3.9 11 � 3.7 ns ns
BA at the start of therapy (yr) 10 � 2.3 9 � 3.2 9 � 3.2 9 � 3.0 ns ns
Height SDS at the start of therapy �3.0 � 0.9 �3.0 � 1.1 �3.5 � 1.3 �3.0 � 1.1 ns 0.034
BMI SDS at the start of therapy 0.4 � 0.8 0.6 � 1.1 0.8 � 1.1 0.6 � 1.1 ns ns
Mean rhGH dose (�g/kg � d) 48 48 48 48 ns ns
First-year growth velocity (cm/yr) 7.4 � 1.6 7.1 � 1.9 6.4 � 2.1 7.2 � 1.8 ns 0.037
IGF-I SDS before rhGH therapy �0.3 � 1.1 �0.3 � 1.5 �0.5 � 1.5 �0.3 � 1.4 ns ns
IGF-I SDS after first year of rhGH therapy 1.3 � 1.0 1.9 � 2 1.2 � 2 1.8 � 1.8 ns ns
IGFBP-3 SDS before rhGH therapy 0.2 � 1.1 0.2 � 1.5 �0.8 � 1.0 0.2 � 1.3 �0.001c �0.001
IGFBP-3 SDS after first year of rhGH therapy 1.2 � 0.5 0.9 � 1.4 0.4 � 1.0 0.9 � 1.3 �0.030d 0.039
Number of patients for long-term outcomes 10 35 20 45
Spontaneous:induced puberty 2:8 7:28 1:19 9:36 ns ns
Chronological age at onset of puberty (yr) 15.0 � 1.6 14.0 � 2.3 15.0 � 2.7 14.2 � 2.2 ns ns
rhGH therapy before onset of puberty (yr) 3.1 � 2.0 4.0 � 2.7 3.3 � 2.0 4.0 � 2.7 ns ns
Duration of rhGH therapy (yr) 5.0 � 2.3 5.0 � 2.7 5.0 � 2.4 5.0 � 2.6 ns ns
Adult height SDS �1.0 � 0.7 �1.9 � 1.0 �2.7 � 0.8 �1.7 � 1.0 �0.001e �0.001
Adult height–target height SDS �0.5 � 0.7 �1.0 � 1.0 �1.6 � 1.4 �0.9 � 1.0 0.031d 0.025
Height gain SDS 1.7 � 0.8 1.0 � 1.2 0.5 � 1.6 1.2 � 1.1 ns 0.045

A/* indicates combined A/C and A/A �202-IGFBP3 genotypes. ns, Not significant.
a One-way ANOVA.
b Student t test.
c Tukey test: A/A vs. C/C � P � 0.05; A/A vs. A/C � ns; A/C vs. C/C � P � 0.05.
d Tukey test: A/A vs. C/C � P � 0.05; A/A vs. A/C � ns; A/C vs. C/C � ns.
e Tukey test: A/A vs. C/C � P � 0.05; A/A vs. A/C � P � 0.05; A/C vs. C/C � P � 0.05.
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spite similar rhGH doses and duration of treatment, pa-
tients with TS who presented the combination of the two
favorable genotypes (GHR-exon 3 d3/* � �202 A/*
IGFBP3) reached adult height on average 1.4 SD (95% CI
of 0.9–1.9, P � 0.001) higher than those girls with TS
carrying unfavorable combined genotypes (GHR-exon 3

fl/fl � �202 C/C IGFBP3; P � 0.001). Patients with in-
termediate genotypes (fl/fl � A/* or d3* � C/C) had in-
between results (Table 3 and Fig. 1).

Alone, the GHR-exon 3 genotype accounted for 27%
of adult height variation (P � 0.001), whereas the �202
A/C IGFBP3 genotype accounted for 24% (P � 0.001).

Combined, these two variants were re-
sponsible for 37% of adult height vari-
ation (P � 0.001) and together with
basal height SDS (P � 0.001) and chro-
nological age at onset of puberty (P �
0.001) explained 61% of the observed
variation.

Discussion

In recent years, rhGH pharmacogenetic
studies demonstrated that common
polymorphisms can modulate the re-
sponse to rhGH treatment (11, 18–20).
The addition of these genetic factors to
established clinical variables might im-
prove the accuracy of growth response
prediction, allowing for individualized

FIG. 1. The absolute values of height (centimeters) (A) and number of patients (B) according
to the GHR exon3 and �202 A/C IGFBP-3 genotypes.

TABLE 3. Clinical and hormonal features of 112 patients with TS grouped according to combined GHR-exon 3 and
�202 IGFBP3 genotypes

GHR-exon 3 and �202 IGFBP3 genotypes
Pd3/*� A/*

(1)
fl/fl�A/* or d3*�C/C

(2)
fl/fl�C/C

(3) (1) vs. (2) vs. (3)a

Number of patients for short-term outcomes 44 37 31
Karyotype 45,X 50% 56% 49%
Target height SDS �0.6 � 0.8 �0.8 � 0.8 �1 � 0.9 ns
Chronological age at the start of therapy (yr) 11 � 3.6 11 � 3.7 12 � 4 ns
BA at the start of therapy (yr) 9 � 3.1 9 � 3.1 10 � 3.1 ns
Height SDS at the start of therapy �3.0 � 0.9 �3.1 � 1.2 �3.7 � 1.3 0.023b

BMI SDS at the start of therapy 0.7 � 1.1 0.4 � 1.0 0.8 � 1.2 ns
Mean rhGH dose (�g/kg � d) 48 48 48 ns
First-year growth velocity (cm/yr) 7.8 � 1.6 6.8 � 1.9 6.0 � 2.0 �0.001c

IGF-I SDS before rhGH therapy �0.1 � 1.6 �0.3 � 1.3 �0.8 � 1.3 ns
IGF-I SDS after first year of rhGH therapy 1.9 � 2.0 1.7 � 1.6 1.1 � 1.9 ns
IGFBP-3 SDS before rhGH therapy 0.2 � 1.6 0.2 � 1.0 �1.1 � 0.8 �0.001d

IGFBP-3 SDS after first year of rhGH therapy 1.1 � 0.9 0.6 � 0.8 0.4 � 1.1 0.004c

Number of patients for long-term outcomes 27 21 17
Spontaneous:induced puberty 6:21 3:18 1:16 ns
Chronological age at onset of puberty (yr) 14.0 � 1.9 14.5 � 2.3 15.0 � 2.8 ns
rhGH therapy before onset of puberty (yr) 4.0 � 2.6 3.0 � 2.0 3.0 � 2.0 ns
Duration of rhGH therapy (yr) 5.0 � 2.5 4.5 � 2.4 5.0 � 2.4 ns
Adult height SDS �1.3 � 0.7 �2.2 � 1.8 �2.7 � 0.8 �0.001c

Adult height-target height SDS �0.7 � 0.9 �1.4 � 0.9 �1.6 � 1.4 0.014b

Height gain SDS 1.3 � 1.1 0.8 � 1.3 0.6 � 1.6 ns

ns, Not significant.
a One-way ANOVA.
b Tukey test: (1) vs. (3) � P � 0.05; (1) vs. (2) � ns; (2) vs. (3) � ns.
c Tukey test: (1) vs. (3) � P � 0.05; (1) vs. (2) � P � 0.05; (2) vs. (3) � ns.
d Tukey test: (1) vs. (3) � P � 0.05; (1) vs. (2) � ns; (2) vs. (3) � P � 0.05.
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therapy. One of the limitations of rhGH pharmacogenetic
studies is the significant variability in the etiology of short
stature in some conditions in which rhGH therapy is used,
such as idiopathic short stature and children born small
for gestational age (SGA) (21, 22). TS, on the other hand,
is a more homogeneous cause of short stature because
SHOX gene haploinsufficiency is the main cause of
growth impairment (23).

The present study confirmed the positive influence of
GHR-d3 allele on not only the first-year growth velocity
(24) but also adult height outcomes (8) in patients with TS
treated with rhGH. The absence of correlation between
GHR-exon 3 genotype and growth response to rhGH in
two previous studies in patients with TS can be partially
explained by the small numbers of patients enrolled (9)
and the paucity of individuals carrying the GHR-d3 allele
(10), precluding sufficient statistical power. A published
meta-analysis concluded that the GHR-d3 allele is asso-
ciated with better growth response to rhGH in GHD and
non-GHD children with short stature (7). Although alone
the GHR-exon 3 genotype accounts for a slight difference
in growth response between genotype groups (7), its as-
sociation with other polymorphisms might improve pre-
diction models resulting in a better individualization of
rhGH treatment. In the present study, for the first time, the
combined impact of genotypes at different loci on the mag-
nitude of growth response to rhGH therapy in the patients
with Turner syndrome was analyzed.

IGFBP-3 is known to modulate the actions of IGF and
also exhibits distinct biological effects independent of the
IGF/IGF-I receptor axis (25–29). The �202 A/C SNP of
the IGFBP3 promoter region has been correlated with
circulating IGFBP-3 levels in healthy adults (30), GHD
children (11), and children born small for gestational age
(12). In agreement with these findings, in the present
study, patients with TS carrying the �202A-IGFBP3 al-
lele also had mean IGFBP-3 levels higher than patients
homozygous for the �202C-IGFBP3 allele. Additionally,
the presence of the �202A-IGFBP3 allele was also asso-
ciated with better short- and long-term growth outcomes,
similar to what was observed for patients with severe
GHD (11).

It is noteworthy that the combined analysis of the
GHR-exon 3 and �202 A/C IGFBP3 disclosed a clear
nonadditive epistatic influence of these two common poly-
morphisms on adult height of patients with TS treated
with rhGH (GHR-exon 3 alone, R2 � 0.27; �202 A/C
IGFBP3, R2 � 0.24; the combined genotypes, R2 � 0.37,
Fig. 1). Together with the clinical factors, these genotypes
accounted for 61% of variability in adult height of pa-
tients with TS after rhGH therapy.

We conclude that homozygosity for the GHR-exon3
full-length allele and �202 C-IGFBP3 allele are associ-
ated with less favorable short- and long-term growth out-
comes after rhGH treatment in patients with Turner syn-
drome. Furthermore, these polymorphisms exhibit a
nonadditive interaction in rhGH outcomes. The combined
influence of multiple as-yet-undiscovered genetic factors
with the already known ones might improve the accuracy
of the prediction of growth response allowing the desired
personalized medicine. The idea of personalized treatment
proposes that the combination of clinical and genetic fac-
tors could influence the treatment strategy in each indi-
vidual patient, including the choice of drug dose. Our data
support the idea that rhGH dose should be tailored at the
start of treatment according to the worst/best clinical and
genotypic profile. This concept needs to be proved in pro-
spective studies. Patients with less favorable genotypes
could benefit from higher rhGH doses improving height
outcome. On the other hand, patients with the best re-
sponsive genotypes could benefit from dose reduction and
consequently treatment cost and side effects without im-
pairment in height outcome.
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