ARIEL BARRETO NOGUEIRA

(Fonte: Lattes)
Índice h a partir de 2011
5
Projetos de Pesquisa
Unidades Organizacionais
Instituto de Radiologia, Hospital das Clínicas, Faculdade de Medicina - Médico

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 5 Citação(ões) na Scopus
    Results of surgical treatment of massive localized lymphedema in severely obese patients
    (2014) CINTRA JÚNIOR, Wilson; MODOLIN, Miguel Luiz Antonio; ROCHA, Rodrigo Itocazo; FERNANDES, Thadeu Rangel; NOGUEIRA, Ariel Barreto; GEMPERLI, Rolf
    OBJECTIVE: to evaluate the importance of treatment of deformities caused by massive localized lymphedema (MLL) in the severely obese. METHODS: in a period of seven years, nine patients with morbid obesity and a mean age of 33 years underwent surgical resection of massive localized lymphedema with primary synthesis. This is a retrospective study on the surgical technique, complication rates and improved quality of life. RESULTS: all patients reported significant improvement after surgery, with greater range of motion, ambulation with ease and more effective hygiene. Histological analysis demonstrated the existence of a chronic inflammatory process marked by lymphomonocitary infiltrate and severe tissue edema. We observed foci of necrosis, formation of microabscesses, points of suppuration and local fibrosis organization, and pachydermia. The lymphatic vessels and some blood capillaries were increased, depicting a framework of linfangiectasias. CONCLUSION: surgical treatment of MLL proved to be important for improving patients' quality of life, functionally rehabilitating them and optimizing multidisciplinary follow-up of morbid obesity, with satisfactory surgical results and acceptable complication rates, demonstrating the importance of treatment and awareness about the disease.
  • article 19 Citação(ões) na Scopus
    Multimodality Monitoring, Inflammation, and Neuroregeneration in Subarachnoid Hemorrhage
    (2014) NOGUEIRA, Adriano B.; NOGUEIRA, Ariel B.; VEIGA, Jose C. Esteves; TEIXEIRA, Manoel J.
    BACKGROUND: Stroke, including subarachnoid hemorrhage (SAH), is one of the leading causes of morbidity and mortality worldwide. The mortality rate of poor-grade SAH ranges from 34% to 52%. In an attempt to improve SAH outcomes, clinical research on multimodality monitoring has been performed, as has basic science research on inflammation and neuroregeneration (which can occur due to injury-induced neurogenesis). Nevertheless, the current literature does not focus on the integrated study of these fields. Multimodality monitoring corresponds to physiological data obtained during clinical management by both noninvasive and invasive methods. Regarding inflammation and neuroregeneration, evidence suggests that, in all types of stroke, a proinflammatory phase and an anti-inflammatory phase occur consecutively; these phases affect neurogenesis, which is also influenced by other pathophysiological features of stroke, such as ischemia, seizures, and spreading depression. OBJECTIVE: To assess whether injury-induced neurogenesis is a prognostic factor in poor-grade SAH that can be monitored and modulated. METHODS: We propose a protocol for multimodality monitoring-guided hypothermia in poor-grade SAH in which cellular and molecular markers of inflammation and neuroregeneration can be monitored in parallel with clinical and multimodal data. EXPECTED OUTCOMES: This study may reveal correlations between markers of inflammation and neurogenesis in blood and cerebrospinal fluid, based on clinical and multimodality monitoring parameters. DISCUSSION: This protocol has the potential to lead to new therapies for acute, diffuse, and severe brain diseases.
  • article 38 Citação(ões) na Scopus
    Existence of a potential neurogenic system in the adult human brain
    (2014) NOGUEIRA, Adriano Barreto; SOGAYAR, Mari Cleide; COLQUHOUN, Alison; SIQUEIRA, Sheila Aparecida; NOGUEIRA, Ariel Barreto; MARCHIORI, Paulo Euripedes; TEIXEIRA, Manoel Jacobsen
    Background: Prevailingly, adult mammalian neurogenesis is thought to occur in discrete, separate locations known as neurogenic niches that are best characterized in the subgranular zone (SGZ) of the dentate gyrus and in the subventricular zone (SVZ). The existence of adult human neurogenic niches is controversial. Methods: The existence of neurogenic niches was investigated with neurogenesis marker immunostaining in histologically normal human brains obtained from autopsies. Twenty-eight adult temporal lobes, specimens from limbic structures and the hypothalamus of one newborn and one adult were examined. Results: The neural stem cell marker nestin stained circumventricular organ cells and the immature neuronal marker doublecortin (DCX) stained hypothalamic and limbic structures adjacent to circumventricular organs; both markers stained a continuous structure running from the hypothalamus to the hippocampus. The cell proliferation marker Ki-67 was detected predominately in structures that form the septo-hypothalamic continuum. Nestin-expressing cells were located in the fimbria-fornix at the insertion of the choroid plexus; ependymal cells in this structure expressed the putative neural stem cell marker CD133. From the choroidal fissure in the temporal lobe, a nestin-positive cell layer spread throughout the SVZ and subpial zone. In the subpial zone, a branch of this layer reached the hippocampal sulcus and ended in the SGZ (principally in the newborn) and in the subiculum (principally in the adults). Another branch of the nestin-positive cell layer in the subpial zone returned to the optic chiasm. DCX staining was detected in the periventricular and middle hypothalamus and more densely from the mammillary body to the subiculum through the fimbria-fornix, thus running through the principal neuronal pathway from the hippocampus to the hypothalamus. The column of the fornix forms part of this pathway and appears to coincide with the zone previously identified as the human rostral migratory stream. Partial co-labeling with DCX and the neuronal marker beta III-tubulin was also observed. Conclusions: Collectively, these findings suggest the existence of an adult human neurogenic system that rises from the circumventricular organs and follows, at minimum, the circuitry of the hypothalamus and limbic system.