ROGER CHAMMAS

(Fonte: Lattes)
Índice h a partir de 2011
27
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Radiologia, Faculdade de Medicina - Docente
LIM/05 - Laboratório de Poluição Atmosférica Experimental, Hospital das Clínicas, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 10 de 17
  • article 45 Citação(ões) na Scopus
    Emerging Autophagy Functions Shape the Tumor Microenvironment and Play a Role in Cancer Progression-Implications for Cancer Therapy
    (2020) BUSTOS, Silvina Odete; ANTUNES, Fernanda; RANGEL, Maria Cristina; CHAMMAS, Roger
    The tumor microenvironment (TME) is a complex environment where cancer cells reside and interact with different types of cells, secreted factors, and the extracellular matrix. Additionally, TME is shaped by several processes, such as autophagy. Autophagy has emerged as a conserved intracellular degradation pathway for clearance of damaged organelles or aberrant proteins. With its central role, autophagy maintains the cellular homeostasis and orchestrates stress responses, playing opposite roles in tumorigenesis. During tumor development, autophagy also mediates autophagy-independent functions associated with several hallmarks of cancer, and therefore exerting several effects on tumor suppression and/or tumor promotion mechanisms. Beyond the concept of degradation, new different forms of autophagy have been described as modulators of cancer progression, such as secretory autophagy enabling intercellular communication in the TME by cargo release. In this context, the synthesis of senescence-associated secretory proteins by autophagy lead to a senescent phenotype. Besides disturbing tumor treatment responses, autophagy also participates in innate and adaptive immune signaling. Furthermore, recent studies have indicated intricate crosstalk between autophagy and the epithelial-mesenchymal transition (EMT), by which cancer cells obtain an invasive phenotype and metastatic potential. Thus, autophagy in the cancer context is far broader and complex than just a cell energy sensing mechanism. In this scenario, we will discuss the key roles of autophagy in the TME and surrounding cells, contributing to cancer development and progression/EMT. Finally, the potential intervention in autophagy processes as a strategy for cancer therapy will be addressed.
  • article 7 Citação(ões) na Scopus
    Secretory Autophagy Forges a Therapy Resistant Microenvironment in Melanoma
    (2022) BUSTOS, Silvina Odete; SANTOS, Nathalia Leal; CHAMMAS, Roger; ANDRADE, Luciana Nogueira de Sousa
    Simple Summary Tumor microenvironment (TME) is a complex of many cell types and extracellular matrix that play an active role in regulating and sustaining melanoma tumor progression. In this context, the secretion of several molecules, by secretory autophagy or exosome release, stimulates the intercellular communication between the different components of the TME modulating tumor response. Here, we discuss the current awareness around the role of extracellular secretion in melanoma TME and also investigate the molecules related to these secretion pathways in melanoma progression using public databases. Melanoma is the most aggressive skin cancer characterized by high mutational burden and large heterogeneity. Cancer cells are surrounded by a complex environment, critical to tumor establishment and progression. Thus, tumor-associated stromal components can sustain tumor demands or impair cancer cell progression. One way to manage such processes is through the regulation of autophagy, both in stromal and tumor cells. Autophagy is a catabolic mechanism that provides nutrients and energy, and it eliminates damaged organelles by degradation and recycling of cellular elements. Besides this primary function, autophagy plays multiple roles in the tumor microenvironment capable of affecting cell fate. Evidence demonstrates the existence of novel branches in the autophagy system related to cytoplasmic constituent's secretion. Hence, autophagy-dependent secretion assembles a tangled network of signaling that potentially contributes to metabolism reprogramming, immune regulation, and tumor progression. Here, we summarize the current awareness regarding secretory autophagy and the intersection with exosome biogenesis and release in melanoma and their role in tumor resistance. In addition, we present and discuss data from public databases concerning autophagy and exosome-related genes as important mediators of melanoma behavior. Finally, we will present the main challenges in the field and strategies to translate most of the pre-clinical findings to clinical practice.
  • article 45 Citação(ões) na Scopus
    Phosphatidylcholine-Derived Lipid Mediators: The Crosstalk Between Cancer Cells and Immune Cells
    (2022) SAITO, Renata de Freitas; ANDRADE, Luciana Nogueira de Sousa; BUSTOS, Silvina Odete; CHAMMAS, Roger
    To become resistant, cancer cells need to activate and maintain molecular defense mechanisms that depend on an energy trade-off between resistance and essential functions. Metabolic reprogramming has been shown to fuel cell growth and contribute to cancer drug resistance. Recently, changes in lipid metabolism have emerged as an important driver of resistance to anticancer agents. In this review, we highlight the role of choline metabolism with a focus on the phosphatidylcholine cycle in the regulation of resistance to therapy. We analyze the contribution of phosphatidylcholine and its metabolites to intracellular processes of cancer cells, both as the major cell membrane constituents and source of energy. We further extended our discussion about the role of phosphatidylcholine-derived lipid mediators in cellular communication between cancer and immune cells within the tumor microenvironment, as well as their pivotal role in the immune regulation of therapeutic failure. Changes in phosphatidylcholine metabolism are part of an adaptive program activated in response to stress conditions that contribute to cancer therapy resistance and open therapeutic opportunities for treating drug-resistant cancers.
  • article 6 Citação(ões) na Scopus
    Tumor-Derived Extracellular Vesicles: Modulation of Cellular Functional Dynamics in Tumor Microenvironment and Its Clinical Implications
    (2021) SANTOS, Nathalia Leal; BUSTOS, Silvina Odete; BHATT, Darshak; CHAMMAS, Roger; ANDRADE, Luciana Nogueira de Sousa
    Cancer can be described as a dynamic disease formed by malignant and stromal cells. The cellular interaction between these components in the tumor microenvironment (TME) dictates the development of the disease and can be mediated by extracellular vesicles secreted by tumor cells (TEVs). In this review, we summarize emerging findings about how TEVs modify important aspects of the disease like continuous tumor growth, induction of angiogenesis and metastasis establishment. We also discuss how these nanostructures can educate the immune infiltrating cells to generate an immunosuppressive environment that favors tumor progression. Furthermore, we offer our perspective on the path TEVs interfere in cancer treatment response and promote tumor recurrence, highlighting the need to understand the underlying mechanisms controlling TEVs secretion and cargo sorting. In addition, we discuss the clinical potential of TEVs as markers of cell state transitions including the acquisition of a treatment-resistant phenotype, and their potential as therapeutic targets for interventions such as the use of extracellular vesicle (EV) inhibitors to block their pro-tumoral activities. Some of the technical challenges for TEVs research and clinical use are also presented.
  • conferenceObject
    Near Infrared Fluorescence In-Vivo Imaging of Non-Hodgkin Lymphoma Using Cy7-Bevacizumab
    (2017) CAMACHO, Ximena; PERRONI, Carolina; JUNQUEIRA, Mara de Souza; FERNANDEZ, Marcelo; BUSTOS, Silvina; BUCHPIGUEL, Carlos; CHAMMAS, Roger; GAMBINI, Juan Pablo; CABRAL, Pablo; RIVA, Eloisa
  • article 21 Citação(ões) na Scopus
    Galectin-3 sensitized melanoma cell lines to vemurafenib (PLX4032) induced cell death through prevention of autophagy
    (2018) BUSTOS, S. O.; PEREIRA, G. J. S.; SAITO, R. F.; GIL, C. D.; ZANATTA, D. B.; SMAILI, S. S.; CHAMMAS, R.
    Melanoma is a current worldwide problem, as its incidence is increasing. In the last years, several studies have shown that melanoma cells display high levels of autophagy, a self-degradative process that can promote survival leading to drug resistance. Consequently, autophagy regulation represents a challenge for cancer therapy. Herein, we showed that galectin-3 (Gal-3), a β-galactoside binding lectin which is often lost along melanoma progression, is a negative regulator of autophagy in melanoma cells. Our data demonstrated that Gal-3low/negative cells were more resistant to the inhibition of the activity of the cancer driver gene BRAFV600E by vemurafenib (PLX4032). Interestingly, in these cells, starvation caused further LC3-II accumulation in cells exposed to chloroquine, which inhibits the degradative step in autophagy. In addition, Gal-3 low/negative tumor cells accumulated more LC3-II than Gal-3 high tumor cells in vivo. Resistance of Gal-3low/negative cells was associated with increased production of superoxide and activation of the Endoplasmic Reticulum (ER) stress response, as evaluated by accumulation of GRP78. Pharmacological inhibition of autophagy with bafilomycin A reversed the relative resistance of Gal-3low/negative cells to vemurafenib treatment. Taken together, these results show that the autophagic flux is dependent on Gal-3 levels, which attenuate the prosurvival role of autophagy. © Bustos et al.
  • article 1 Citação(ões) na Scopus
    Insights from a Computational-Based Approach for Analyzing Autophagy Genes across Human Cancers
    (2023) CARRASCO, Alexis German Murillo; GIOVANINI, Guilherme; RAMOS, Alexandre Ferreira; CHAMMAS, Roger; BUSTOS, Silvina Odete
    In the last decade, there has been a boost in autophagy reports due to its role in cancer progression and its association with tumor resistance to treatment. Despite this, many questions remain to be elucidated and explored among the different tumors. Here, we used omics-based cancer datasets to identify autophagy genes as prognostic markers in cancer. We then combined these findings with independent studies to further characterize the clinical significance of these genes in cancer. Our observations highlight the importance of innovative approaches to analyze tumor heterogeneity, potentially affecting the expression of autophagy-related genes with either pro-tumoral or anti-tumoral functions. In silico analysis allowed for identifying three genes (TBC1D12, KERA, and TUBA3D) not previously described as associated with autophagy pathways in cancer. While autophagy-related genes were rarely mutated across human cancers, the expression profiles of these genes allowed the clustering of different cancers into three independent groups. We have also analyzed datasets highlighting the effects of drugs or regulatory RNAs on autophagy. Altogether, these data provide a comprehensive list of targets to further the understanding of autophagy mechanisms in cancer and investigate possible therapeutic targets.
  • article 4 Citação(ões) na Scopus
    Extracellular Vesicle-Packaged miR-195-5p Sensitizes Melanoma to Targeted Therapy with Kinase Inhibitors
    (2023) SANTOS, Nathalia L.; BUSTOS, Silvina O.; REIS, Patricia P.; CHAMMAS, Roger; ANDRADE, Luciana N. S.
    Management of advanced melanoma remains challenging, with most BRAF (B-Raf proto-oncogene, serine/threonine kinase)-mutated metastatic patients relapsing within a few months upon MAPK inhibitors treatment. Modulation of tumor-derived extracellular vesicle (EVs) cargo with enrichment of antitumoral molecules is a promising strategy to impair tumor progression and increase treatment response. Herein, we report that restored expression of miR-195-5p, down-regulated in melanoma favoring drug resistance, increases the release of EVs enriched in the tumor suppressor miRNAs, miR-195-5p, miR-152-3p, and miR-202-3p. Incorporating these EVs by bystander tumor cells resulted in decreased proliferation and viability, accompanied by a reduction in CCND1 and YAP1 mRNA levels. Upon treatment with MAPK inhibitors, miR-195 EVs significantly decreased BCL2-L1 protein levels and increased cell death ratio and treatment efficacy. Additionally, EVs exogenously loaded with miR-195-5p by electroporation reduced tumor volume in vivo and impaired engraftment and growth of xenografts implanted with melanoma cells exposed to MAPK inhibitors. Our study shows that miR-195-5p antitumoral activity can be spread to bystander cells through EVs, improving melanoma response to targeted therapy and revealing a promising EV-based strategy to increase clinical response in patients harboring BRAF mutations.
  • article 2 Citação(ões) na Scopus
    MG-Pe: A Novel Galectin-3 Ligand with Antimelanoma Properties and Adjuvant Effects to Dacarbazine
    (2022) BISCAIA, Stellee M. P.; PIRES, Cassiano; LIVERO, Francislaine A. R.; BELLAN, Daniel L.; BINI, Israel; BUSTOS, Silvina O.; VASCONCELOS, Renata O.; ACCO, Alexandra; IACOMINI, Marcello; CARBONERO, Elaine R.; AMSTALDEN, Martin K.; KUBATA, Fabio R.; CUMMINGS, Richard D.; DIAS-BARUFFI, Marcelo; SIMAS, Fernanda F.; OLIVEIRA, Carolina C.; FREITAS, Rilton A.; FRANCO, Celia Regina Cavichiolo; CHAMMAS, Roger; TRINDADE, Edvaldo S.
    Melanoma is a highly metastatic and rapidly progressing cancer, a leading cause of mortality among skin cancers. The melanoma microenvironment, formed from the activity of malignant cells on the extracellular matrix and the recruitment of immune cells, plays an active role in the development of drug resistance and tumor recurrence, which are clinical challenges in cancer treatment. These tumoral metabolic processes are affected by proteins, including Galectin-3 (Gal-3), which is extensively involved in cancer development. Previously, we characterized a partially methylated mannogalactan (MG-Pe) with antimelanoma activities. In vivo models of melanoma were used to observe MG-Pe effects in survival, spontaneous, and experimental metastases and in tissue oxidative stress. Analytical assays for the molecular interaction of MG-Pe and Gal-3 were performed using a quartz crystal microbalance, atomic force microscopy, and contact angle tensiometer. MG-Pe exhibits an additive effect when administered together with the chemotherapeutic agent dacarbazine, leading to increased survival of treated mice, metastases reduction, and the modulation of oxidative stress. MG-Pe binds to galectin-3. Furthermore, MG-Pe antitumor effects were substantially reduced in Gal-3/KO mice. Our results showed that the novel Gal-3 ligand, MG-Pe, has both antitumor and antimetastatic effects, alone or in combination with chemotherapy.
  • article 68 Citação(ões) na Scopus
    Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments
    (2016) CARDOSO, Ana Carolina Ferreira; ANDRADE, Luciana Nogueira de Sousa; BUSTOS, Silvina Odete; CHAMMAS, Roger
    Galectin-3 is a member of the beta-galactoside-binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein found in the nucleus and in the cytoplasm, under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (e.g., hypoxia and nutrient deprivation) galectin-3 is upregulated, through the activity of transcription factors, such as HIF-1 alpha and NF-kappa B. Here, we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins, and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell, and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocytes/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, as (i) it favors tumor cell adaptation for survival in stressed conditions; (ii) upon secretion, galectin-3 induces tumor cell detachment and migration; and (iii) it attracts monocyte/macrophage and endothelial cells to the tumor mass, inducing both directly and indirectly the process of angiogenesis. The two latter activities are potentially targetable, and specific interventions may be designed to counteract the protumoral role of extracellular galectin-3.