BRYAN ERIC STRAUSS

(Fonte: Lattes)
Índice h a partir de 2011
17
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina
LIM/05 - Laboratório de Poluição Atmosférica Experimental, Hospital das Clínicas, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 10 de 17
  • article 21 Citação(ões) na Scopus
    Combined p19Arf and interferon-beta gene transfer enhances cell death of B16 melanoma in vitro and in vivo
    (2013) MERKEL, C. A.; MEDRANO, R. F. V.; BARAUNA, V. G.; STRAUSS, B. E.
    Approximately 90% of melanomas retain wild-type p53, a characteristic that may help shape the development of novel treatment strategies. Here, we employed an adenoviral vector where transgene expression is,controlled by p53 to deliver the p19 alternate reading frame (An) and interferon-beta (IFN beta) complementary DNAs in the B16 mouse model of melanoma. In vitro, cell death was enhanced by combined gene transfer (63.82 +/- 15.30% sub-GO cells); yet introduction of a single gene resulted in significantly fewer hypoploid cells (37.73 +/- 7.3% or 36.96 +/- 11.58%, p19Arf or IFN beta, respectively, P < 0.05). Annexin V staining and caspase-3 cleavage indicate a cell death mechanism consistent with apoptosis. Using reverse transcriptase quantitative PCR, we show that key transcriptional targets of p53 were upregulated in the presence of p19Arf, although treatment with IFN beta did not alter expression of the genes studied. In situ gene therapy revealed significant inhibition of subcutaneous tumors by IFN beta (571 +/- 25 mm(3)) or the combination of p19Arf and IFN beta (489 +/- 124 mm(3)) as compared with the LacZ control (1875 +/- 33 mm(3), P < 0.001); whereas p19Arf yielded an intermediate result (1053 +/- 169 mm(3), P < 0.01 vs control). However, only the combination was associated with increased cell death and prolonged survival (P < 0.01). As shown here, the combined transfer of p19Arf and IFN beta using p53-responsive vectors enhanced cell death both in vitro and in vivo.
  • conferenceObject
    Combined p19Arf and Interferon-beta Gene Therapy: Evidence of Immune Response in Murine Models of Melanoma and Lung Carcinoma
    (2013) STRAUSS, Bryan E.; MEDRANO, Ruan Felipe V.; RIBEIRO, Aline H.; CATANI, Joao Paulo P.; MERKEL, Christian A.
    Background: Our previous work has included the development of viral vectors where transgene expression is controlled by the transcriptional functions of the p53 tumor suppressor protein. Since wild-type p53 is frequently maintained in melanoma, we propose that such vectors may provide an opportunity for interplay between endogenous and exogenous factors. Transfer of p19Arf, a functional partner of p53, should help activate endogenous p53, thus supporting both vector expression and killing of tumor cells. Interferon-beta (IFNβ) is known to activate the immune system, induce apoptosis and inhibit angiogenesis. Moreover, interactions of the p53/Arf and IFN pathways have been reported. Previously we have shown that combined, but not individual, transfer of p19Arf and IFNβ mediated by our p53-responsive Ad5 vector induced massive cell death of B16 (mouse melanoma) both in vitro and in vivo. Objective: Our current aims include revealing involvement of the immune system in response to gene transfer protocols utilizing p53-responsive Ad5 or AdRGD vectors. Methods/Results: B16 cells with forced expression of CAR were transduced ex vivo with the Ad5 vectors (called AdPG) and implanted subcutaneously in C57BL/6 mice. Seven days later, these same mice received a challenge with fresh B16 cells implanted s.c. in the contralateral flank. Transfer of IFNβ alone or in combination with p19Arf reduced tumor formation at the sites of the vaccination and challenge. However, the combined treatment resulted in smaller tumors with delayed progression and prolonged survival. In parallel, RGD-modified adenoviral vectors, AdRGDPG, were constructed and shown to increase viral tropism as well as provide the expected synergy between p19Arf and IFNβ in CAR-negative B16 cells. This new set of AdRGDPG vectors was used in a model of in situ gene therapy of Lewis Lung Carcinoma (LLC) where tumors were first established s.c. in C57BL/6 mice then treated in vivo with six rounds of viral transduction. Treatment with IFNβ alone or in combination with p19Arf was effective in retarding tumor progression. Strikingly, s.c. challenge tumors implanted in the contralateral flank were inhibited especially well only in the animals previously treated with the combination of p19Arf and IFNβ. Alternatively, LLC cells were implanted s.c. in Balb/c nude mice and treated in situ. In this case, we did not observe a reduction in tumor progression in any of the conditions, indicating the importance of the adaptive immune system for tumor inhibition in response to our gene transfer strategy. Conclusion: In mouse tumor cell lines that retain wild-type p53, treatment with the combination of p19 Arf and IFNβ appears to involve the immune system, induce immunological memory and may provide an advantage over mono-gene therapy.
  • article 18 Citação(ões) na Scopus
    Combination of cabazitaxel and p53 gene therapy abolishes prostate carcinoma tumor growth
    (2020) TAMURA, Rodrigo Esaki; LANA, Marlous G.; COSTANZI-STRAUSS, Eugenia; STRAUSS, Bryan E.
    For patients with metastatic prostate cancer, the 5-year survival rate of 31% points to a need for novel therapies and improvement of existing modalities. We propose that p53 gene therapy and chemotherapy, when combined, will provide superior tumor cell killing for the treatment of prostate carcinoma. To this end, we have developed the AdRGD-PGp53 vector which offers autoregulated expression of p53, resulting in enhanced tumor cell killing in vitro and in vivo. Here, we combined AdRGD-PGp53 along with the chemotherapy drugs used in the clinical treatment of prostate carcinoma, mitoxantrone, docetaxel, or cabazitaxel. Our results indicate that all drugs increase phosphorylation of p53, leading to improved induction of p53 targets. In vitro experiments reveal that AdRGD-PGp53 sensitizes prostate cancer cells to each of the drugs tested, conferring increased levels of cell death. In a xenograft mouse model of in situ gene therapy, AdRGD-PGp53 treatment, when combined with cabazitaxel, drastically reduced tumor progression and increased survival rates to 100%. Strikingly, we used a sub-therapeutic dose of cabazitaxel thus avoiding leukopenia, yet still showed potent anti-tumor effects when combined with AdRGD-PGp53 in this mouse model. The AdRGD-PGp53 approach warrants further development for its application in gene therapy of prostate carcinoma.
  • article 17 Citação(ões) na Scopus
    Improved Production of Genetically Modified Fetuses with Homogeneous Transgene Expression After Transgene Integration Site Analysis and Recloning in Cattle
    (2011) BRESSAN, Fabiana Fernandes; MIRANDA, Moyses dos Santos; PERECIN, Felipe; BEM, Tiago Henrique De; PEREIRA, Flavia Thomaz Verechia; RUSSO-CARBOLANTE, Elisa Maria; ALVES, Daiani; STRAUSS, Bryan; BAJGELMAN, Marcio; KRIEGER, Jose Eduardo; BINELLI, Mario; MEIRELLES, Flavio Vieira
    Animal cloning by nuclear transfer (NT) has made the production of transgenic animals using genetically modified donor cells possible and ensures the presence of the gene construct in the offspring. The identification of transgene insertion sites in donor cells before cloning may avoid the production of animals that carry undesirable characteristics due to positional effects. This article compares blastocyst development and competence to establish pregnancies of bovine cloned embryos reconstructed with lentivirus-mediated transgenic fibroblasts containing either random integration of a transgene (random integration group) or nuclear transfer derived transgenic fibroblasts with known transgene insertion sites submitted to recloning (recloned group). In the random integration group, eGFP-expressing bovine fetal fibroblasts were selected by fluorescence activated cell sorting (FACS) and used as nuclei donor cells for NT. In the recloned group, a fibroblast cell line derived from a transgenic cloned fetus was characterized regarding transgene insertion and submitted to recloning. The recloned group had higher blastocyst production (25.38 vs. 14.42%) and higher percentage of 30-day pregnancies (14.29 vs. 2.56%) when compared to the random integration group. Relative eGFP expression analysis in fibroblasts derived from each cloned embryo revealed more homogeneous expression in the recloned group. In conclusion, the use of cell lines recovered from transgenic fetuses after identification of the transgene integration site allowed for the production of cells and fetuses with stable transgene expression, and recloning may improve transgenic animal yields.
  • article 15 Citação(ões) na Scopus
    New routes for transgenesis of the mouse
    (2012) BELIZARIO, Jose E.; AKAMINI, Priscilla; WOLF, Philip; STRAUSS, Bryan; XAVIER-NETO, Jose
    Transgenesis refers to the molecular genetic techniques for directing specific insertions, deletions and point mutations in the genome of germ cells in order to create genetically modified organisms (GMO). Genetic modification is becoming more practicable, efficient and predictable with the development and use of a variety of cell and molecular biology tools and DNA sequencing technologies. A collection of plasmidial and viral vectors, cell-type specific promoters, positive and negative selectable markers, reporter genes, drug-inducible Cre-loxP and Flp/FRT recombinase systems are available which ensure efficient transgenesis in the mouse. The technologies for the insertion and removal of genes by homologous-directed recombination in embryonic stem cells (ES) and generation of targeted gain- and loss-of function alleles have allowed the creation of thousands of mouse models of a variety of diseases. The engineered zinc finger nucleases (ZFNs) and small hairpin RNA-expressing constructs are novel tools with useful properties for gene knockout free of ES manipulation. In this review we briefly outline the different approaches and technologies for transgenesis as well as their advantages and disadvantages. We also present an overview on how the novel integrative mouse and human genomic databases and bioinformatics approaches have been used to understand genotype-phenotype relationships of hundreds of mutated and candidate disease genes in mouse models. The updating and continued improvements of the genomic technologies will eventually help us to unraveling the biological and pathological processes in such a way that they can be translated more efficiently from mouse to human and vise-versa.
  • conferenceObject
    Membrane coating for nonreplicating adenoviral vectors aids gene delivery in a murine model of melanoma
    (2021) TESSAROLLO, N. G.; DOMINGUES, A. C. M.; STRAUSS, B. E.
  • article 5 Citação(ões) na Scopus
    Bicistronic transfer of CDKN2A and p53 culminates in collaborative killing of human lung cancer cells in vitro and in vivo
    (2020) XANDE, Juliana G.; DIAS, Ana P.; TAMURA, Rodrigo E.; CRUZ, Mario C.; BRITO, Barbara; FERREIRA, Robledo A.; STRAUSS, Bryan E.; COSTANZI-STRAUSS, Eugenia
    Cancer therapies that target a single protein or pathway may be limited by their specificity, thus missing key players that control cellular proliferation and contributing to the failure of the treatment. We propose that approaches to cancer therapy that hit multiple targets would limit the chances of escape. To this end, we have developed a bicistronic adenoviral vector encoding both the CDKN2A and p53 tumor suppressor genes. The bicistronic vector, AdCDKN2A-I-p53, supports the translation of both gene products from a single transcript, assuring that all transduced cells will express both proteins. We show that combined, but not single, gene transfer results in markedly reduced proliferation and increased cell death correlated with reduced levels of phosphorylated pRB, induction of CDKN1A and caspase 3 activity, yet avoiding the induction of senescence. Using isogenic cell lines, we show that these effects were not impeded by the presence of mutant p53. In a mouse model of in situ gene therapy, a single intratumoral treatment with the bicistronic vector conferred markedly inhibited tumor progression while the treatment with either CDKN2A or p53 alone only partially controlled tumor growth. Histologic analysis revealed widespread transduction, yet reduced proliferation and increased cell death was associated only with the simultaneous transfer of CDKN2A and p53. We propose that restoration of two of the most frequently altered genes in human cancer, mediated by AdCDKN2A-I-p53, is beneficial since multiple targets are reached, thus increasing the efficacy of the treatment.
  • conferenceObject
    Sequencing of a Genetic Barcode Reveals Altered Population Dynamics in a Mouse Model of Transplanted Hematopoietic Stem Cells Transduced with a Lentivirus Encoding LMO2
    (2013) STRAUSS, Bryan E.; ZANATTA, Daniela B.; AGUIAR, Rodrigo; TSUJITA, Maristela; BORELLI, Primavera
  • article 17 Citação(ões) na Scopus
    Induction of Oxidants Distinguishes Susceptibility of Prostate Carcinoma Cell Lines to p53 Gene Transfer Mediated by an Improved Adenoviral Vector
    (2017) TAMURA, Rodrigo Esaki; HUNGER, Aline; FERNANDES, Denise C.; LAURINDO, Francisco R.; COSTANZI-STRAUSS, Eugenia; STRAUSS, Bryan E.
    Previously, the authors developed an adenoviral vector, Ad-PG, where transgene expression is regulated by a p53-responsive promoter. When used to transfer the p53 cDNA, a positive feedback mechanism is established. In the present study, a critical comparison is performed between Ad-PGp53 and AdRGD-PGp53, where the RGD motif was incorporated in the adenoviral fiber protein. AdRGD-PGp53 provided superior transgene expression levels and resulted in the killing of prostate carcinoma cell lines DU145 and PC3. In vitro, this effect was associated with increased production of cytoplasmic and mitochondrial oxidants, DNA damage as revealed by detection of phosphorylated H2AX, as well as cell death consistent with apoptosis. Differential gene expression of key mediators of reactive oxygen species pathways was also observed. Specifically, it was noted that induction of known p53-target genes Sestrin2 and PIG3, as well as a novel target, NOX1, occurred in PC3 cells only when transduced with the improved vector, AdRGD-PGp53. The participation of NOX1 was confirmed upon its inhibition using a specific peptide, resulting in reduced cell death. In situ gene therapy also resulted in significantly improved inhibition of tumor progression consistent with oxidant-induced DNA damage only when treated with the novel AdRGD-PGp53 vector. The study shows that the improved adenovirus overcomes limitations associated with other p53-expressing vectors and induces oxidant-mediating killing, thus supporting its further development for cancer gene therapy.