SERGIO PAULO BYDLOWSKI

(Fonte: Lattes)
Índice h a partir de 2011
20
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Clínica Médica, Faculdade de Medicina - Docente
LIM/19 - Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 21 Citação(ões) na Scopus
    Short-term effects of 7-ketocholesterol on human adipose tissue mesenchymal stem cells in vitro
    (2014) LEVY, Debora; RUIZ, Jorge Luis Maria; CELESTINO, Andrea Turbuck; SILVA, Suelen Feitoza; FERREIRA, Adilson Kleber; ISAAC, Cesar; BYDLOWSKI, Sergio Paulo
    Oxysterols comprise a very heterogeneous group derived from cholesterol through enzymatic and nonenzymatic oxidation. Among them, 7-ketocholesterol (7-KC) is one of the most important. It has potent effects in cell death processes, including cytoxicity and apoptosis induction. Mesenchymal stem cells (MSCs) are multipotent cells characterized by self-renewal and cellular differentiation capabilities. Very little is known about the effects of oxysterols in MSCs. Here, we describe the short-term cytotoxic effect of 7-ketocholesterol on MSCs derived from human adipose tissue. MSCs were isolated from adipose tissue obtained from two young, healthy women. After 24 h incubation with 7-KC, mitochondrial hyperpolarization was observed, followed by a slight increase in the level of apoptosis and changes in actin organization. Finally, the IC50 of 7-KC was higher in these cells than has been observed or described in other normal or cancer cell lines.
  • article 15 Citação(ões) na Scopus
    ABCB1, ABCC1, and LRP gene expressions are altered by LDL, HDL, and serum deprivation in a human doxorubicin-resistant uterine sarcoma cell line
    (2015) CELESTINO, Andrea Turbuck; LEVY, Debora; RUIZ, Jorge Luis Maria; BYDLOWSKI, Sergio Paulo
    Multidrug resistance (MDR) is the major cause of cancer treatment failure. The ATP-binding cassette-B1 (ABCB1) transporter, also known as MDR1 or P-glycoprotein, is thought to promote the efflux of drugs from cells. MDR is also associated with the multidrug resistance-associated protein 1 (ABCC1) and the lung resistance-related protein (LRP), a human major vault protein. Moreover, MDR has a complex relationship with lipids. The ABCB1 has been reported to modulate cellular cholesterol homeostasis. Conversely, cholesterol has been reported to modulate multidrug transporters. However, results reported to date are contradictory and confusing. The aim of this study was to investigate whether LDL, HDL, and serum deprivation could influence ABCB1, ABCC1, and LRP expression in a human doxorubicin-resistant uterine sarcoma cell line. ABCB1 and ABCC1 expression increased after 24 h of serum deprivation, and expression returned to basal levels after 72 h. LDL, depending on concentration, increased ABCB1, ABCC1, and LRP expression. ABCB1 expression increased at low HDL, and decreased at high HDL concentrations. We demonstrated that serum deprivation and lipoproteins, particularly LDL, modulated ABCB1 expression and, to a lesser extent, ABCC1 expression. This finding may link the phenomena of drug transport, cholesterol metabolism and cancer.
  • article 26 Citação(ões) na Scopus
    Oxysterols selectively promote short-term apoptosis in tumor cell lines
    (2018) LEVY, Debora; MELO, Thatiana Correa de; OHIRA, Bianca Yumi; FIDELIS, Maira Luisa; RUIZ, Jorge L. M.; RODRIGUES, Alessandro; BYDLOWSKI, Sergio P.
    Oxysterols are 27-carbon oxidation products of cholesterol metabolism. Oxysterols possess several biological actions, including the promotion of cell death. Here, we examined the ability of several oxysterols to induce short-term death in cancerous (human breast cancer and mouse skin melanoma cells) and non-cancerous (human endothelial cells and lung fibroblasts) cell lines. We determined cell viability, Ki67 expression, cell cycle regulation, and apoptosis after 24-h incubations with oxysterols. We found that different oxysterols had different effects on the studied parameters. Moreover, the effects depended on cell type and oxysterol concentration. Three cytotoxic oxysterols (7-ketocholesterol, cholestane-3 beta-5 alpha-6 beta-triol, and 5 alpha-cholestane-3 beta,6 beta-diol) inhibited the S phase and stimulated the G0/G1 or G2/M phases. These oxysterols promoted apoptosis, determined with Annexin V and propidium iodide assays. These results showed that different oxysterols have cytotoxic effects depending on the cell line. The findings suggest a potential pharmacological utility of cytotoxic oxysterols.