ROSELY DOS SANTOS MALAFRONTE

(Fonte: Lattes)
Índice h a partir de 2011
13
Projetos de Pesquisa
Unidades Organizacionais
SCPROTOZ-83, Instituto de Medicina Tropical
LIM/49 - Laboratório de Protozoologia, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 27 Citação(ões) na Scopus
    Mitochondrial genome of Plasmodium vivax/simium detected in an endemic region for malaria in the Atlantic Forest of Espirito Santo state, Brazil: do mosquitoes, simians and humans harbour the same parasite?
    (2017) BUERY, Julyana Cerqueira; RODRIGUES, Priscila Thihara; NATAL, Licia; SALLA, Lais Camoese; LOSS, Ana Carolina; VICENTE, Creuza Rachel; REZENDE, Helder Ricas; DUARTE, Ana Maria Ribeiro de Castro; FUX, Blima; MALAFRONTE, Rosely dos Santos; FALQUETO, Aloisio; CERUTTI JR., Crispim
    Background: The transmission of malaria in the extra-Amazonian regions of Brazil, although interrupted in the 1960s, has persisted to the present time in some areas of dense Atlantic Forest, with reports of cases characterized by particular transmission cycles and clinical presentations. Bromeliad-malaria, as it is named, is particularly frequent in the state of Espirito Santo, with Plasmodium vivax being the parasite commonly recognized as the aetiologic agent of human infections. With regard to the spatial and temporal distances between cases reported in this region, the transmission cycle does not fit the traditional malaria cycle. The existence of a zoonosis, with infected simians participating in the epidemiology, is therefore hypothesized. In the present study, transmission of bromeliad-malaria in Espirito Santo is investigated, based on the complete mitochondrial genome of DNA extracted from isolates of Plasmodium species, which had infected humans, a simian from the genus Allouata, and Anopheles mosquitoes. Plasmodium vivax/simium was identified in the samples by both nested PCR and real-time PCR. After amplification, the mitochondrial genome was completely sequenced and compared with a haplotype network which included all sequences of P. vivax/simium mitochondrial genomes sampled from humans and simians from all regions in Brazil. Results: The haplotype network indicates that humans and simians from the Atlantic Forest become infected by the same haplotype, but some isolates from humans are not identical to the simian isolate. In addition, the plasmodial DNA extracted from mosquitoes revealed sequences different from those obtained from simians, but similar to two isolates from humans. Conclusions: These findings strengthen support for the hypothesis that in the Atlantic Forest, and especially in the state with the highest frequency of bromeliad-malaria in Brazil, parasites with similar molecular backgrounds are shared by humans and simians. The recognized identity between P. vivax and P. simium at the species level, the sharing of haplotypes, and the participation of the same vector in transmitting the infection to both host species indicate interspecies transference of the parasites. However, the intensity, frequency and direction of this transfer remain to be clarified.
  • article 35 Citação(ões) na Scopus
    Canine visceral leishmaniasis in the metropolitan area of Sao Paulo: Pintomyia fischeri as potential vector of Leishmania infantum
    (2017) GALVIS-OVALLOS, Fredy; SILVA, Mariana Dantas da; BISPO, Giulia Baldaconi da Silva; OLIVEIRA, Alessandra Gutierrez de; GONCALVES NETO, Jose Rodriguez; MALAFRONTE, Rosely dos Santos; GALATI, Eunice Aparecida Bianchi
    American visceral leishmaniasis is a zoonosis caused by Leishmania infantum and transmitted mainly by Lutzomyia longipalpis. However, canine cases have been reported in the absence of this species in the Greater Sao Paulo region, where Pintomyia fischeri and Migonemyia migonei are the predominant species. This raises the suspicion that they could be acting as vectors. Therefore, this study sought to investigate specific vector capacity parameters of these species and to compare them with those of Lu. longipalpis s.l. Among these parameters the blood feeding rate, the survival, and the susceptibility to the development of Le. infantum were evaluated for the three species, and the attractiveness of dogs to Pi. fischeri and Mg. migonei was evaluated. The estimated interval between blood meals was shorter for Lu. longipalpis s.l, followed by Pi. fischeri and Mg. migonei. The infection rate with Le. infantum flagellates in Lu. longipalpis was 9.8%, in Pi. fischeri 4.8%, and in Mg. migonei nil. The respective infective life expectancies (days) of Lu. longipalpis, Mg. migonei, and Pi. fischeri were 2.4, 1.94, and 1.68. Both Pi. fischeri and Mg. migonei were captured in the kennel with a predominance (95%) of Pi. fischeri. Considering the great attractiveness of dogs to Pi. fischeri, its susceptibility to infection by Le. infantum, infective life expectancies, and predominance in Greater Sao Paulo, this study presents evidence of Pi. fischeri as a potential vector of this parasite in the region.
  • article 4 Citação(ões) na Scopus
    Reassessment of asymptomatic carriers of Plasmodium spp. in an endemic area with a very low incidence of malaria in extra-Amazonian Brazil
    (2017) ALENCAR, Filomena E. C. de; MALAFRONTE, Rosely dos Santos; CERUTTI JR., Crispim; FERNANDES, Licia Natal; BUERY, Julyana Cerqueira; FUX, Blima; REZENDE, Helder Ricas; MIRANDA, Angelica Espinosa
    Background: Regions with residual transmission are potential obstacles to the elimination of malaria. It is, therefore, essential to understand the factors associated with the maintenance of endemic malaria in these areas. The objective was to investigate whether the status of asymptomatic carriers of Plasmodium spp. DNA is maintained in the long term in an extra-Amazonian region of Brazil with low incidence, residual malaria transmission. Methods: Asymptomatic carriers of Plasmodium DNA detected in a survey carried out between 2001 and 2004 were reassessed between 2010 and 2011 using questionnaires, PCR and thick and thin blood smear tests three times at 3-month intervals. Results: Of the 48 carriers detected between 2001 and 2004, 37 were located. Of these, only two had positive PCR results and, as in the first survey, Plasmodium malariae DNA was detected. Conclusion: The findings suggest that untreated dwellers from this extra-Amazonian region, who initially harbour malaria parasites, may become negative without ever developing apparent symptoms of the disease. Although the possibility of re-infection cannot be ruled out, the finding of two individuals harbouring P. malariae, both in the first and in the second survey, may be compatible with a long-term carrier state for this parasite. Since most clinical cases of malaria in the region are a consequence of infection by Plasmodium vivax, the epidemiological impact of such long-term carriage would be limited.