ROSELY DOS SANTOS MALAFRONTE

(Fonte: Lattes)
Índice h a partir de 2011
13
Projetos de Pesquisa
Unidades Organizacionais
SCPROTOZ-83, Instituto de Medicina Tropical
LIM/49 - Laboratório de Protozoologia, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • article 9 Citação(ões) na Scopus
    Clustering symptoms of non-severe malaria in semi-immune Amazonian patients
    (2015) MARTINS, Antonio C.; ARAUJO, Felipe M.; BRAGA, Cassio B.; GUIMARAES, Maria G. S.; NOGUEIRA, Rudi; ARRUDA, Rayanne A.; FERNANDES, Licia N.; CORREA, Livia R.; MALAFRONTE, Rosely dos S.; CRUZ, Oswaldo G.; CODECO, Claudia T.; SILVA-NUNES, Monica da
    Malaria is a disease that generates a broad spectrum of clinical features. The purpose of this study was to evaluate the clinical spectrum of malaria in semi-immune populations. Patients were recruited in Mancio Lima, a city situated in the Brazilian Amazon region. The study included 171 malaria cases, which were diagnosed via the use of a thick blood smear and confirmed by molecular methods. A questionnaire addressing 19 common symptoms was administered to all patients. Multiple correspondence analysis and hierarchical cluster analysis were performed to identify clusters of symptoms, and logistic regression was used to identify factors associated with the occurrence of symptoms. The cluster analysis revealed five groups of symptoms: the first cluster, which included algic- and fever-related symptoms, occurred in up to 95.3% of the cases. The second cluster, which comprised gastric symptoms (nausea, abdominal pain, inappetence, and bitter mouth), occurred in frequencies that ranged between 35.1% and 42.7%, and at least one of these symptoms was observed in 71.9% of the subjects. All respiratory symptoms were clustered and occurred in 42.7% of the malaria cases, and diarrhea occurred in 9.9% of the cases. Symptoms constituting the fifth cluster were vomiting and pallor, with a 14.6% and 11.7% of prevalence, respectively. A higher parasitemia count (more than 300 parasites/mm(3)) was associated with the presence of fever, vomiting, dizziness, and weakness (P < 0.05). Arthralgia and myalgia were associated with patients over the age of 14 years (P < 0.001). Having experienced at least eight malaria episodes prior to the study was associated with a decreased risk of chills and fever and an increased risk of sore throat (P < 0.05). None of the symptoms showed an association with gender or with species of Plasmodium. The clinical spectrum of malaria in semi-immune individuals can have a broad range of symptoms, the frequency and intensity of which are associated with age, past exposure to malaria, and parasitemia. Understanding the full spectrum of nonsevere malaria is important in endemic areas to guide both passive and active case detection, for the diagnosis of malaria in travelers returning to non-endemic areas, and for the development of vaccines aimed to decrease symptom severity.
  • article 16 Citação(ões) na Scopus
    Merozoite surface protein-1 genetic diversity in Plasmodium malariae and Plasmodium brasilianum from Brazil
    (2015) GUIMARAES, Lilian O.; WUNDERLICH, Gerhard; ALVES, Joao M. P.; BUENO, Marina G.; ROEHE, Fabio; CATAO-DIAS, Jose L.; NEVES, Amanda; MALAFRONTE, Rosely S.; CURADO, Izilda; DOMINGUES, Wilson; KIRCHGATTER, Karin
    Background: The merozoite surface protein 1 (MSP1) gene encodes the major surface antigen of invasive forms of the Plasmodium erythrocytic stages and is considered a candidate vaccine antigen against malaria. Due to its polymorphisms, MSP1 is also useful for strain discrimination and consists of a good genetic marker. Sequence diversity in MSP1 has been analyzed in field isolates of three human parasites: P. falciparum, P. vivax, and P. ovale. However, the extent of variation in another human parasite, P. malariae, remains unknown. This parasite shows widespread, uneven distribution in tropical and subtropical regions throughout South America, Asia, and Africa. Interestingly, it is genetically indistinguishable from P. brasilianum, a parasite known to infect New World monkeys in Central and South America. Methods: Specific fragments (1 to 5) covering 60 % of the MSP1 gene (mainly the putatively polymorphic regions), were amplified by PCR in isolates of P. malariae and P. brasilianum from different geographic origin and hosts. Sequencing of the PCR-amplified products or cloned PCR fragments was performed and the sequences were used to construct a phylogenetic tree by the maximum likelihood method. Data were computed to give insights into the evolutionary and phylogenetic relationships of these parasites. Results: Except for fragment 4, sequences from all other fragments consisted of unpublished sequences. The most polymorphic gene region was fragment 2, and in samples where this region lacks polymorphism, all other regions are also identical. The low variability of the P. malariae msp1 sequences of these isolates and the identification of the same haplotype in those collected many years apart at different locations is compatible with a low transmission rate. We also found greater diversity among P. brasilianum isolates compared with P. malariae ones. Lastly, the sequences were segregated according to their geographic origins and hosts, showing a strong genetic and geographic structure. Conclusions: Our data show that there is a low level of sequence diversity and a possible absence of allelic dimorphism of MSP1 in these parasites as opposed to other Plasmodium species. P. brasilianum strains apparently show greater divergence in comparison to P. malariae, thus P. malariae could derive from P. brasilianum, as it has been proposed.
  • article 27 Citação(ões) na Scopus
    The genetic diversity of Plasmodium malariae and Plasmodium brasilianum from human, simian and mosquito hosts in Brazil
    (2012) GUIMARAES, L. O.; BAJAY, M. M.; WUNDERLICH, G.; BUENO, M. G.; ROEHE, F.; CATAO-DIAS, J. L.; NEVES, A.; MALAFRONTE, R. S.; CURADO, I.; KIRCHGATTER, K.
    Plasmodium malariae is a protozoan parasite that causes malaria in humans and is genetically indistinguishable from Plasmodium brasilianum, a parasite infecting New World monkeys in Central and South America. P. malariae has a wide and patchy global distribution in tropical and subtropical regions, being found in South America, Asia, and Africa. However, little is known regarding the genetics of these parasites and the similarity between them could be because until now there are only a very few genomic sequences available from simian Plasmodium species. This study presents the first molecular epidemiological data for P. malariae and P. brasilianum from Brazil obtained from different hosts and uses them to explore the genetic diversity in relation to geographical origin and hosts. By using microsatellite genotyping, we discovered that of the 14 human samples obtained from areas of the Atlantic forest, 5 different multilocus genotypes were recorded, while in a sample from an infected mosquito from the same region a different haplotype was found. We also analyzed the longitudinal change of circulating plasmodial genetic profile in two untreated non-symptomatic patients during a 12-months interval. The circulating genotypes in the two samples from the same patient presented nearly identical multilocus haplotypes (differing by a single locus). The more frequent haplotype persisted for almost 3 years in the human population. The allele Pm09-299 described previously as a genetic marker for South American P. malariae was not found in our samples. Of the 3 non-human primate samples from the Amazon Region, 3 different multilocus genotypes were recorded indicating a greater diversity among isolates of P. brasilianum compared to P. malariae and thus, P. malariae might in fact derive from P. brasilianum as has been proposed in recent studies. Taken together, our data show that based on the microsatellite data there is a relatively restricted polymorphism of P. malariae parasites as opposed to other geographic locations.
  • article 70 Citação(ões) na Scopus
    Human migration and the spread of malaria parasites to the New World
    (2018) RODRIGUES, Priscila T.; VALDIVIA, Hugo O.; OLIVEIRA, Thais C. de; ALVES, Joao Marcelo P.; DUARTE, Ana Maria R. C.; CERUTTI-JUNIOR, Crispim; BUERY, Julyana C.; BRITO, Cristiana F. A.; SOUZA JR., Julio Cesar de; HIRANO, Zelinda M. B.; BUENO, Marina G.; CATAO-DIAS, Jose Luiz; MALAFRONTE, Rosely S.; LADEIA-ANDRADE, Simone; MITA, Toshihiro; SANTAMARIA, Ana Maria; CALZADA, Jose E.; TANTULAR, Indah S.; KAWAMOTO, Fumihiko; RAIJMAKERS, Leonie R. J.; MUELLER, Ivo; PACHECO, M. Andreina; ESCALANTE, Ananias A.; FELGER, Ingrid; FERREIRA, Marcelo U.
    We examined the mitogenomes of a large global collection of human malaria parasites to explore how and when Plasmodium falciparum and P. vivax entered the Americas. We found evidence of a significant contribution of African and South Asian lineages to present-day New World malaria parasites with additional P. vivax lineages appearing to originate from Melanesia that were putatively carried by the Australasian peoples who contributed genes to Native Americans. Importantly, mitochondrial lineages of the P. vivax-like species P. simium are shared by platyrrhine monkeys and humans in the Atlantic Forest ecosystem, but not across the Amazon, which most likely resulted from one or a few recent human-to-monkey transfers. While enslaved Africans were likely the main carriers of P. falciparum mitochondrial lineages into the Americas after the conquest, additional parasites carried by Australasian peoples in pre-Columbian times may have contributed to the extensive diversity of extant local populations of P. vivax.
  • article 4 Citação(ões) na Scopus
    Reassessment of asymptomatic carriers of Plasmodium spp. in an endemic area with a very low incidence of malaria in extra-Amazonian Brazil
    (2017) ALENCAR, Filomena E. C. de; MALAFRONTE, Rosely dos Santos; CERUTTI JR., Crispim; FERNANDES, Licia Natal; BUERY, Julyana Cerqueira; FUX, Blima; REZENDE, Helder Ricas; MIRANDA, Angelica Espinosa
    Background: Regions with residual transmission are potential obstacles to the elimination of malaria. It is, therefore, essential to understand the factors associated with the maintenance of endemic malaria in these areas. The objective was to investigate whether the status of asymptomatic carriers of Plasmodium spp. DNA is maintained in the long term in an extra-Amazonian region of Brazil with low incidence, residual malaria transmission. Methods: Asymptomatic carriers of Plasmodium DNA detected in a survey carried out between 2001 and 2004 were reassessed between 2010 and 2011 using questionnaires, PCR and thick and thin blood smear tests three times at 3-month intervals. Results: Of the 48 carriers detected between 2001 and 2004, 37 were located. Of these, only two had positive PCR results and, as in the first survey, Plasmodium malariae DNA was detected. Conclusion: The findings suggest that untreated dwellers from this extra-Amazonian region, who initially harbour malaria parasites, may become negative without ever developing apparent symptoms of the disease. Although the possibility of re-infection cannot be ruled out, the finding of two individuals harbouring P. malariae, both in the first and in the second survey, may be compatible with a long-term carrier state for this parasite. Since most clinical cases of malaria in the region are a consequence of infection by Plasmodium vivax, the epidemiological impact of such long-term carriage would be limited.