GUARACI DE LIMA REQUENA
Projetos de Pesquisa
Unidades Organizacionais
LIM/23 - Laboratório de Psicopatologia e Terapêutica Psiquiátrica, Hospital das Clínicas, Faculdade de Medicina
5 resultados
Resultados de Busca
Agora exibindo 1 - 5 de 5
- PREDICTING OBSESSIVE-COMPULSIVE DISORDER TREATMENT RESPONSE IN PEDIATRIC PATIENTS USING STRUCTURAL NEUROIMAGING CORRELATES: A COMPARISON BETWEEN SIMPLE LINEAR REGRESSION AND SUPPORT VECTOR REGRESSION(2016) VATTIMO, Edoardo F.; BARROS, Vivian B.; REQUENA, Guaraci; SATO, Joao R.; BATISTUZZO, Marcelo Camargo; SHAVITT, Roseli G.; FATORI, Daniel; MIGUEL, Euripedes; HOEXTER, Marcelo Q.
conferenceObject Attentional Bias to Symmetry and Cleaning Features in Obsessive-Compulsive Disorder: A Pilot Study(2015) MATHIS, Maria Alice De; SALUM, Giovanni; MORAES, Ivanil; BATISTUZZO, Marcelo; MARCO, Marina De; TOLEDO, Maria Cecilia; REQUENA, Guaraci; ABEND, Rany; BAR-HAIM, Yair; MIGUEL, Euripedes; SHAVITT, RoseliconferenceObject Early Life Adverse Experiences and Obsessive-Compulsive Disorder: A Study With Patients, Siblings and Controls(2018) COSTA, Fabiana; CAPPI, Carolina; BATISTUZZO, Marcelo; SHAVITT, Roseli; REQUENA, Guaraci; MIGUEL, Euripedes; HOEXTER, MarceloconferenceObject Treatment Response Prediction in Pediatric Patients With OCD Using Structural Neuroimaging Correlates: Simple Linear Regression Versus Support Vector Regression(2017) VATTIMO, Edoardo; BARROS, Vivian; BATISTUZZO, Marcelo; REQUENA, Guaraci; SATO, Joao; FATORI, Daniel; SHAVITT, Roseli; MIGUEL, Euripedes; HOEXTER, Marcelo- Quantifying dimensional severity of obsessive-compulsive disorder for neurobiological research(2017) SHAVITT, Roseli G.; REQUENA, Guaraci; ALONSO, Pino; ZAI, Gwyneth; COSTA, Daniel L. C.; PEREIRA, Carlos Alberto de Braganca; ROSARIO, Maria Conceicao do; MORAIS, Ivanil; FONTENELLE, Leonardo; CAPPI, Carolina; KENNEDY, James; MENCHON, Jose M.; MIGUEL, Euripedes; RICHTER, Peggy M. A.Current research to explore genetic susceptibility factors in obsessive-compulsive disorder (OCD) has resulted in the tentative identification of a small number of genes. However, findings have not been readily replicated. It is now broadly accepted that a major limitation to this work is the heterogeneous nature of this disorder, and that an approach incorporating OCD symptom dimensions in a quantitative manner may be more successful in identifying both common as well as dimension-specific vulnerability genetic factors. As most existing genetic datasets did not collect specific dimensional severity ratings, a specific method to reliably extract dimensional ratings from the most widely used severity rating scale, the Yale-Brown Obsessive Compulsive Scale (YBOCS), for OCD is needed. This project aims to develop and validate a novel algorithm to extrapolate specific dimensional symptom severity ratings in OCD from the existing YBOCS for use in genetics and other neurobiological research. To accomplish this goal, we used a large data set comprising adult subjects from three independent sites: the Brazilian OCD Consortium, the Sunnybrook Health Sciences Centre in Toronto, Canada and the Hospital of Bellvitge, in Barcelona, Spain. A multinomial logistic regression was proposed to model and predict the quantitative phenotype [i.e., the severity of each of the five homogeneous symptom dimensions of the Dimensional YBOCS (DYBOCS)] in subjects who have only YBOCS (categorical) data. YBOCS and DYBOCS data obtained from 1183 subjects were used to build the model, which was tested with the leave-one-out cross-validation method. The model's goodness of fit, accepting a deviation of up to three points in the predicted DYBOCS score, varied from 78% (symmetry/order) to 84% (cleaning/contamination and hoarding dimensions). These results suggest that this algorithm may be a valuable tool for extracting dimensional phenotypic data for neurobiological studies in OCD.