SUELI MIEKO OBA SHINJO

(Fonte: Lattes)
Índice h a partir de 2011
23
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Neurologia, Faculdade de Medicina
LIM/15 - Laboratório de Investigação em Neurologia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 16
  • article 1 Citação(ões) na Scopus
    Impact of a cell cycle and an extracellular matrix remodeling transcriptional signature on tumor progression and correlation with EZH2 expression in meningioma
    (2022) PEREIRA, Benedito Jamilson Araujo; LERARIO, Antonio Marcondes; SOLA, Paula Rodrigues; LAURENTINO, Talita de Sousa; MOHAN, Dipika R.; ALMEIDA, Antonio Nogueira de; AGUIAR, Paulo Henrique Pires de; PAIVA, Wellingson da Silva; WAKAMATSU, Alda; TEIXEIRA, Manoel Jacobsen; OBA-SHINJO, Sueli Mieko; MARIE, Suely Kazue Nagahashi
    OBJECTIVE The authors searched for genetic and transcriptional signatures associated with tumor progression and recurrence in their cohort of patients with meningiomas, combining the analysis of targeted exome, NF2-LOH, transcrip-tome, and protein expressions. METHODS The authors included 91 patients who underwent resection of intracranial meningioma at their institution between June 2000 and November 2007. The search of somatic mutations was performed by Next Generation Sequenc-ing through a customized panel and multiplex ligation-dependent probe amplification for NF2 loss of heterozygosity. The transcriptomic profile was analyzed by QuantSeq 3 ' mRNA-Seq. The differentially expressed genes of interest were validated at the protein level analysis by immunohistochemistry.RESULTS The transcriptomic analysis identified an upregulated set of genes related to metabolism and cell cycle and downregulated genes related to immune response and extracellular matrix remodeling in grade 2 (atypical) meningio-mas, with a significant difference in recurrent compared with nonrecurrent cases. EZH2 nuclear positivity associated with grade 2, particularly with recurrent tumors and EZH2 gene expression level, correlated positively with the expres-sion of genes related to cell cycle and negatively to genes related to immune response and regulation of cell motility. CONCLUSIONS The authors identified modules of dysregulated genes in grade 2 meningiomas related to the activation of oxidative metabolism, cell division, cell motility due to extracellular remodeling, and immune evasion that were predic-tive of survival and exhibited significant correlations with EZH2 expression.
  • article 0 Citação(ões) na Scopus
    Exercise training attenuates skeletal muscle fat infiltration and improves insulin pathway of patients with immune-mediated necrotizing myopathies and dermatomyositis
    (2023) OLIVEIRA, Diego Sales de; BORGES, Isabela Bruna Pires; MARIE, Suely Kazue Nagahashi; LERARIO, Antonio Marcondes; OBA-SHINJO, Sueli Mieko; SHINJO, Samuel Katsuyuki
    Objectives: This study aims to evaluate the effects of exercise training on intramuscular lipid content and genes related to insulin pathway in patients with systemic autoimmune myopathies (SAMs). Patients and methods: Between January 2016 and May 2019, a total of seven patients with dermatomyositis (DM; 3 males, 4 females; mean age: 49.8 & PLUSMN;2.3 years; range, 43 to 54 years), six with immune mediated necrotizing myopathy (IMNM; 3 males, 3 females; mean age: 58.5 & PLUSMN;10.6 years; range, 46 to 74 years), and 10 control individuals (CTRL group; 4 males, 6 females; mean age: 48.7 & PLUSMN;3.9 years; range, 41 to 56 years) were included. The muscle biopsy before and after the intervention was performed to evaluate the intramuscular lipid content. Patients underwent a combined exercise training program for 12 weeks. Skeletal muscle gene expression was analyzed and the DM versus CTRL group, DM pre-and post-, and IMNM pre-and post-intervention were compared. Results: The DM group had a higher intramuscular lipid content in type II muscle fibers compared to the CTRL group. After the intervention, there was a reduction of lipid content in type I and II fibers in DM and IMNM group. The CTRL group showed a significantly higher expression of genes related to insulin and lipid oxidation pathways (AMPK$2, AS160, INSR, PGC1-a, PI3K, and RAB14) compared to the DM group. After exercise training, there was an increase gene expression related to insulin pathway and lipid oxidation in DM group (AMPK$2, AS160, INSR, PGC1-a, PI3K, and RAB14) and in IMNM group (AKT2, AMPK$2, RAB10, RAB14, and PGC1-a). Conclusion: Exercise training attenuated the amount of fat in type I and II muscle fibers in patients with DM and IMNM and increased gene expression related to insulin pathways and lipid oxidation in DM and IMNM. These results suggest that exercise training can improve the quality and metabolic functions of skeletal muscle in these diseases.
  • article 30 Citação(ões) na Scopus
    Changes in the expression of proteins associated with aerobic glycolysis and cell migration are involved in tumorigenic ability of two glioma cell lines
    (2012) RAMAO, Anelisa; GIMENEZ, Marcela; LAURE, Helen Julie; IZUMI, Clarice; VIDA, Rodrigo Cesar dos Santos; OBA-SHINJO, Sueli; MARIE, Suely Kazue Nagahashi; ROSA, Jose Cesar
    Background: The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. Results: We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. Conclusions: Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.
  • conferenceObject
    LOXL3 knock out affects pathways which involve cytoskeleton regulation, proliferation and apoptosis in glioblastoma cells
    (2023) LAURENTINO, Talita S.; SOARES, Roseli S.; LERARIO, Antonio M.; MARIE, Suely K.; OBA-SHINJO, Sueli Mieko
  • article
    Glutaminolysis dynamics during astrocytoma progression correlates with tumor aggressiveness
    (2021) FRANCO, Yollanda E. Moreira; ALVES, Maria Jose; UNO, Miyuki; MORETTI, Isabele Fattori; TROMBETTA-LIMA, Marina; SANTOS, Suzana de Siqueira; SANTOS, Ancely Ferreira dos; ARINI, Gabriel Santos; BAPTISTA, Mauricio S.; LERARIO, Antonio Marcondes; OBA-SHINJO, Sueli Mieko; MARIE, Suely Kazue Nagahashi
    Background Glioblastoma is the most frequent and high-grade adult malignant central nervous system tumor. The prognosis is still poor despite the use of combined therapy involving maximal surgical resection, radiotherapy, and chemotherapy. Metabolic reprogramming currently is recognized as one of the hallmarks of cancer. Glutamine metabolism through glutaminolysis has been associated with tumor cell maintenance and survival, and with antioxidative stress through glutathione (GSH) synthesis. Methods In the present study, we analyzed the glutaminolysis-related gene expression levels in our cohort of 153 astrocytomas of different malignant grades and 22 non-neoplastic brain samples through qRT-PCR. Additionally, we investigated the protein expression profile of the key regulator of glutaminolysis (GLS), glutamate dehydrogenase (GLUD1), and glutamate pyruvate transaminase (GPT2) in these samples. We also investigated the glutathione synthase (GS) protein profile and the GSH levels in different grades of astrocytomas. The differential gene expressions were validated in silico on the TCGA database. Results We found an increase of glutaminase isoform 2 gene (GLSiso2) expression in all grades of astrocytoma compared to non-neoplastic brain tissue, with a gradual expression increment in parallel to malignancy. Genes coding for GLUD1 and GPT2 expression levels varied according to the grade of malignancy, being downregulated in glioblastoma, and upregulated in lower grades of astrocytoma (AGII-AGIII). Significant low GLUD1 and GPT2 protein levels were observed in the mesenchymal subtype of GBM. Conclusions In glioblastoma, particularly in the mesenchymal subtype, the downregulation of both genes and proteins (GLUD1 and GPT2) increases the source of glutamate for GSH synthesis and enhances tumor cell fitness due to increased antioxidative capacity. In contrast, in lower-grade astrocytoma, mainly in those harboring the IDH1 mutation, the gene expression profile indicates that tumor cells might be sensitized to oxidative stress due to reduced GSH synthesis. The measurement of GLUD1 and GPT2 metabolic substrates, ammonia, and alanine, by noninvasive MR spectroscopy, may potentially allow the identification of IDH1(mut) AGII and AGIII progression towards secondary GBM.
  • article 5 Citação(ões) na Scopus
    Urinary Sediment Transcriptomic and Longitudinal Data to Investigate Renal Function Decline in Type 1 Diabetes
    (2020) MONTEIRO, Maria Beatriz; PELAES, Tatiana S.; SANTOS-BEZERRA, Daniele P.; THIEME, Karina; LERARIO, Antonio M.; OBA-SHINJO, Sueli M.; MACHADO, Ubiratan F.; PASSARELLI, Marisa; MARIE, Suely K. N.; CORREA-GIANNELLA, Maria Lucia
    Introduction: Using a discovery/validation approach we investigated associations between a panel of genes selected from a transcriptomic study and the estimated glomerular filtration rate (eGFR) decline across time in a cohort of type 1 diabetes (T1D) patients. Experimental: Urinary sediment transcriptomic was performed to select highly modulated genes in T1D patients with rapid eGFR decline (decliners) vs. patients with stable eGFR (non-decliners). The selected genes were validated in samples from a T1D cohort (n = 54, mean diabetes duration of 21 years, 61% women) followed longitudinally for a median of 12 years in a Diabetes Outpatient Clinic. Results: In the discovery phase, the transcriptomic study revealed 158 genes significantly different between decliners and non-decliners. Ten genes increasingly up or down-regulated according to renal function worsening were selected for validation by qRT-PCR; the genes CYP4F22, and PMP22 were confirmed as differentially expressed comparing decliners vs. non-decliners after adjustment for potential confounders. CYP4F22, LYPD3, PMP22, MAP1LC3C, HS3ST2, GPNMB, CDH6, and PKD2L1 significantly modified the slope of eGFR in T1D patients across time. Conclusions: Eight genes identified as differentially expressed in the urinary sediment of T1D patients presenting different eGFR decline rates significantly increased the accuracy of predicted renal function across time in the studied cohort. These genes may be a promising way of unveiling novel mechanisms associated with diabetic kidney disease progression.
  • article 0 Citação(ões) na Scopus
    Effect of atorvastatin on muscle tissues of dermatomyositis and antisynthetase syndrome patients with dyslipidemia
    (2024) BORGES, Isabela Bruna Pires; OBA-SHINJO, Sueli Mieko; LERARIO, Antonio Marcondes; MARIE, Suely Kazue Nagahashi; SHINJO, Samuel Katsuyuki
    Introduction: In a recent study, we have shown that atorvastatin is clinically safe for dermatomyositis (DM) and antisynthetase syndrome (ASS) patients with dyslipidemia. Herein, we showed in an unprecedented way, the safety of atorvastatin on the muscular tissues of these patients.Methods: Transcriptome analysis was performed on samples of the vastus lateralis muscle obtained at baseline and after 12 weeks of atorvastatin (20 mg/day) intervention in DM or ASS patients with dyslipidemia [6DM and 5ASS received atorvastatin, and 2DM and 3ASS received placebo]. The results were analyzed considering differences in expression fold change before and after treatment. Histological and histochemical analyses were also performed.Results: In both groups, no significant changes were observed in genes related to the mitochondrial, oxidative, insulin, lipid, and fibrogenic pathways. Histological analysis showed a slight variability in the fiber size that was preserved after the intervention. In addition, the mosaic of muscle fibers was preserved in the internal architecture of the fibers and all histological regions. No fiber necrosis or atrophy, focal failures, subsarcolemmal accumulation, lipids, areas of fibrosis, or alterations in mitochondrial activity were observed. All muscle fibers were labeled for MHC I.Conclusion: Atorvastatin did not promote significant changes in the expression of genes related to mitochondrial, oxidative, insulin, lipid, and fibrogenic pathways in the muscle tissues of DM and ASS patients with dyslipidemia. Atorvastatin did not also promote histological and histochemical changes in muscle tissues. Our results reinforce the safety of the administration of atorvastatin to treat dyslipidemia in patients with DM and ASS.
  • article 7 Citação(ões) na Scopus
    Serum interleukin-17A level is associated with disease activity of adult patients with dermatomyositis and polymyositis
    (2019) SILVA, M. G.; OBA-SHINJO, S. M.; MARIE, S. K. N.; SHINJO, S. K.
    Objective To assess serum interleukin (IL)-17A levels in patients with dermatomyositis (DM) and polymyositis (PM) and correlate them with the demographic, clinical, laboratory and therapeutic data of these diseases. Methods This was a cross-sectional, single-centre study that included defined DM and PM patients who were age-, gender- and ethnicity-matched to healthy individuals. Serum IL-17A analysis, as well as analysis for other cytokines (IL-6, TNF alpha and IFN gamma), was performed by multiplex immunoassay. The disease status parameters were based on the International Myositis Assessment and Clinical Studies Group (IMACS) set scores. Results Eighty DM, 32 PM patients and 104 healthy individuals were enrolled. Mean age of patients with DM and PM was 46.0 and 47.7, respectively, with a predominance of women and white ethnicity in both groups. Overall, clinical, laboratory, therapeutic, and current disease status were similar among patients with DM and PM. Median serum IL-17A level was higher in patients with PM and DM than the control group (0.73 vs. 0.49 vs. 0.35 pg/mL, respectively; p<0.050) and higher in PM when compared to DM (p<0.001). In DM, serum IL-17A levels were associated with cumulative cutaneous lesions, IMACS parameters, and serum IL-6 and IFN gamma levels. In PM, serum IL-17A levels correlated with patients' current age, IMACS parameters and serum TNF alpha and IFN gamma levels. Conclusion Serum IL-17A levels are not only increased, but also associated with disease activity in patients with DM and PM. Our data strongly suggest that IL-17A may be a biomarker of disease activity for these systemic autoimmune myopathies.
  • article 2 Citação(ões) na Scopus
    GBM Cells Exhibit Susceptibility to Metformin Treatment According to TLR4 Pathway Activation and Metabolic and Antioxidant Status
    (2023) MORETTI, Isabele Fattori; LERARIO, Antonio Marcondes; SOLA, Paula Rodrigues; MACEDO-DA-SILVA, Janaina; BAPTISTA, Mauricio da Silva; PALMISANO, Giuseppe; OBA-SHINJO, Sueli Mieko; MARIE, Suely Kazue Nagahashi
    Simple Summary An analysis of metformin (MET) treatment in combination with temozolomide (TMZ) in two glioblastoma cell lines, U87MG and A172, stimulated with lipopolysaccharide (LPS), a TLR4 agonist was conducted. Both cells presented blunted mitochondrial respiration leading to oxidative stress after MET treatment, and decreased cell viability after MET + TMZ treatment. U87MG cells presented increased apoptosis after MET + LPS + TMZ treatment by increment of ER stress, and downregulation of BLC2. A172, with an upregulated antioxidant background, including SOD1, exhibited cell cycle arrest after MET + TMZ treatment. The observed differential response was associated with a distinct metabolic status: glycolytic/plurimetabolic (GPM) subtype in U87MG and mitochondrial (MTC) in A172. TCGA-GBM-RNASeq in silico analysis showed that GPM-GBM cases with an activated TLR4 pathway might respond to MET, but the concomitant CXCL8/IL8 upregulation may demand a combination treatment with an IL8 inhibitor. MET combined with an antioxidant inhibitor, such as anti-SOD1, may be indicated for MTC-GBM cases. Glioblastoma (GBM) is an aggressive brain cancer associated with poor overall survival. The metabolic status and tumor microenvironment of GBM cells have been targeted to improve therapeutic strategies. TLR4 is an important innate immune receptor capable of recognizing pathogens and danger-associated molecules. We have previously demonstrated the presence of TLR4 in GBM tumors and the decreased viability of the GBM tumor cell line after lipopolysaccharide (LPS) (TLR4 agonist) stimulation. In the present study, metformin (MET) treatment, used in combination with temozolomide (TMZ) in two GBM cell lines (U87MG and A172) and stimulated with LPS was analyzed. MET is a drug widely used for the treatment of diabetes and has been repurposed for cancer treatment owing to its anti-proliferative and anti-inflammatory actions. The aim of the study was to investigate MET and LPS treatment in two GBM cell lines with different metabolic statuses. MET treatment led to mitochondrial respiration blunting and oxidative stress with superoxide production in both cell lines, more markedly in U87MG cells. Decreased cell viability after MET + TMZ and MET + LPS + TMZ treatment was observed in both cell lines. U87MG cells exhibited apoptosis after MET + LPS + TMZ treatment, promoting increased ER stress, unfolded protein response, and BLC2 downregulation. LPS stimulation of U87MG cells led to upregulation of SOD2 and genes related to the TLR4 signaling pathway, including IL1B and CXCL8. A172 cells attained upregulated antioxidant gene expression, particularly SOD1, TXN and PRDX1-5, while MET treatment led to cell-cycle arrest. In silico analysis of the TCGA-GBM-RNASeq dataset indicated that the glycolytic plurimetabolic (GPM)-GBM subtype had a transcriptomic profile which overlapped with U87MG cells, suggesting GBM cases exhibiting this metabolic background with an activated inflammatory TLR4 pathway may respond to MET treatment. For cases with upregulated CXCL8, coding for IL8 (a pro-angiogenic factor), combination treatment with an IL8 inhibitor may improve tumor growth control. The A172 cell line corresponded to the mitochondrial (MTC)-GBM subtype, where MET plus an antioxidant inhibitor, such as anti-SOD1, may be indicated as a combinatory therapy.
  • article 0 Citação(ões) na Scopus
    Integrated transcriptomics uncovers an enhanced association between the prion protein gene expression and vesicle dynamics signatures in glioblastomas
    (2024) BOCCACINO, Jacqueline Marcia; PEIXOTO, Rafael dos Santos; FERNANDES, Camila Felix de Lima; CANGIANO, Giovanni; SOLA, Paula Rodrigues; COELHO, Barbara Paranhos; PRADO, Mariana Brandao; MELO-ESCOBAR, Maria Isabel; SOUSA, Breno Pereira de; AYYADHURY, Shamini; BADER, Gary D.; SHINJO, Sueli Mieko Oba; MARIE, Suely Kazue Nagahashi; ROCHA, Edroaldo Lummertz da; LOPES, Marilene Hohmuth
    BackgroundGlioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive.MethodsTo elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings.ResultsFunctional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells.ConclusionsTogether, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.