CESAR MANUEL REMUZGO RUIZ

(Fonte: Lattes)
Índice h a partir de 2011
2
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina
LIM/19 - Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 2 Citação(ões) na Scopus
    IgE and IgG4 Epitopes of Dermatophagoides and Blomia Allergens before and after Sublingual Immunotherapy
    (2023) FIGO, Daniele Danella; MACEDO, Priscilla Rios Cordeiro; GADERMAIER, Gabriele; REMUZGO, Cesar; CASTRO, Fabio Fernandes Morato; KALIL, Jorge; GALVAO, Clovis Eduardo Santos; SANTOS, Keity Souza
    Sublingual immunotherapy (SLIT) is used worldwide to treat house dust mites (HDM) allergy. Epitope specific immunotherapy with peptide vaccines is used far less, but it is of great interest in the treatment of allergic reactions, as it precludes the drawbacks of allergen extracts. The ideal peptide candidates would bind to IgG, blocking IgE-binding. To better elucidate IgE and IgG4 epitope profiles during SLIT, sequences of main allergens, Der p 1, 2, 5, 7, 10, 23 and Blo t 5, 6, 12, 13, were included in a 15-mer peptide microarray and tested against pooled sera from 10 patients pre- and post-1-year SLIT. All allergens were recognized to some extent by at least one antibody isotype and peptide diversity was higher post-1-year SLIT for both antibodies. IgE recognition diversity varied among allergens and timepoints without a clear tendency. Der p 10, a minor allergen in temperate regions, was the molecule with more IgE-peptides and might be a major allergen in populations highly exposed to helminths and cockroaches, such as Brazil. SLIT-induced IgG4 epitopes were directed against several, but not all, IgE-binding regions. We selected a set of peptides that recognized only IgG4 or were able to induce increased ratios of IgG4:IgE after one year of treatment and might be potential targets for vaccines.
  • article 5 Citação(ões) na Scopus
    Immunodominant antibody responses directed to SARS-CoV-2 hotspot mutation sites and risk of immune escape
    (2023) OLIVEIRA, Jamille Ramos; RUIZ, Cesar Manuel Remuzgo; MACHADO, Rafael Rahal Guaragna; MAGAWA, Jhosiene Yukari; DAHER, Isabela Pazotti; URBANSKI, Alysson Henrique; SCHMITZ, Gabriela Justamante Haendel; ARCURI, Helen Andrade; FERREIRA, Marcelo Alves; SASAHARA, Greyce Luri; MEDEIROS, Giuliana Xavier de; JR, Roberto Carlos Vieira Silva; DURIGON, Edison Luiz; BOSCARDIN, Silvia Beatriz; ROSA, Daniela Santoro; SCHECHTMAN, Deborah; NAKAYA, Helder. I. I.; CUNHA-NETO, Edecio; GADERMAIER, Gabriele; KALIL, Jorge; COELHO, Veronica; SANTOS, Keity Souza
    IntroductionConsidering the likely need for the development of novel effective vaccines adapted to emerging relevant CoV-2 variants, the increasing knowledge of epitope recognition profile among convalescents and afterwards vaccinated with identification of immunodominant regions may provide important information. MethodsWe used an RBD peptide microarray to identify IgG and IgA binding regions in serum of 71 COVID-19 convalescents and 18 vaccinated individuals. ResultsWe found a set of immunodominant RBD antibody epitopes, each recognized by more than 30% of the tested cohort, that differ among the two different groups and are within conserved regions among betacoronavirus. Of those, only one peptide, P44 (S415-429), recognized by 68% of convalescents, presented IgG and IgA antibody reactivity that positively correlated with nAb titers, suggesting that this is a relevant RBD region and a potential target of IgG/IgA neutralizing activity. DiscussionThis peptide is localized within the area of contact with ACE-2 and harbors the mutation hotspot site K417 present in gamma (K417T), beta (K417N), and omicron (K417N) variants of concern. The epitope profile of vaccinated individuals differed from convalescents, with a more diverse repertoire of immunodominant peptides, recognized by more than 30% of the cohort. Noteworthy, immunodominant regions of recognition by vaccinated coincide with mutation sites at Omicron BA.1, an important variant emerging after massive vaccination. Together, our data show that immune pressure induced by dominant antibody responses may favor hotspot mutation sites and the selection of variants capable of evading humoral response.