MIRIAM HELENA FONSECA ALANIZ

(Fonte: Lattes)
Índice h a partir de 2011
10
Projetos de Pesquisa
Unidades Organizacionais
LIM/13 - Laboratório de Genética e Cardiologia Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 6 de 6
  • article 9 Citação(ões) na Scopus
    Uncovering emergent phenotypes in endothelial cells by clustering of surrogates of cardiovascular risk factors
    (2022) PINHEIRO-DE-SOUSA, Iguaracy; FONSECA-ALANIZ, Miriam H.; TEIXEIRA, Samantha K.; V, Mariliza Rodrigues; KRIEGER, Jose E.
    Endothelial dysfunction (ED) is a hallmark of atherosclerosis and is influenced by well-defined risk factors, including hypoxia, dyslipidemia, inflammation, and oscillatory flow. However, the individual and combined contributions to the molecular underpinnings of ED remain elusive. We used global gene expression in human coronary artery endothelial cells to identify gene pathways and cellular processes in response to chemical hypoxia, oxidized lipids, IL-1 beta induced inflammation, oscillatory flow, and these combined stimuli. We found that clustering of the surrogate risk factors differed from the sum of the individual insults that gave rise to emergent phenotypes such as cell proliferation. We validated these observations in samples of human coronary artery atherosclerotic plaques analyzed using single-cell RNA sequencing. Our findings suggest a hierarchical interaction between surrogates of CV risk factors and the advent of emergent phenotypes in response to combined stimulation in endothelial cells that may influence ED.
  • article 15 Citação(ões) na Scopus
    High stretch induces endothelial dysfunction accompanied by oxidative stress and actin remodeling in human saphenous vein endothelial cells
    (2021) GIRAO-SILVA, T.; FONSECA-ALANIZ, M. H.; RIBEIRO-SILVA, J. C.; LEE, J.; PATIL, N. P.; DALLAN, L. A.; BAKER, A. B.; HARMSEN, M. C.; KRIEGER, J. E.; MIYAKAWA, A. A.
    The rate of the remodeling of the arterialized saphenous vein conduit limits the outcomes of coronary artery bypass graft surgery (CABG), which may be influenced by endothelial dysfunction. We tested the hypothesis that high stretch (HS) induces human saphenous vein endothelial cell (hSVEC) dysfunction and examined candidate underlying mechanisms. Our results showed that in vitro HS reduces NO bioavailability, increases inflammatory adhesion molecule expression (E-selectin and VCAM1) and THP-1 cell adhesion. HS decreases F-actin in hSVECs, but not in human arterial endothelial cells, and is accompanied by G-actin and cofilin's nuclear shuttling and increased reactive oxidative species (ROS). Pre-treatment with the broad-acting antioxidant N-acetylcysteine (NAC) supported this observation and diminished stretch-induced actin remodeling and inflammatory adhesive molecule expression. Altogether, we provide evidence that increased oxidative stress and actin cytoskeleton remodeling play a role in HS-induced saphenous vein endothelial cell dysfunction, which may contribute to predisposing saphenous vein graft to failure.
  • article 9 Citação(ões) na Scopus
    Three-dimensional imaging of mitochondrial cristae complexity using cryo-soft X-ray tomography
    (2020) POLO, Carla C.; FONSECA-ALANIZ, Miriam H.; CHEN, Jian-Hua; EKMAN, Axel; MCDERMOTT, Gerry; MENEAU, Florian; KRIEGER, Jose E.; MIYAKAWA, Ayumi A.
    Mitochondria are dynamic organelles that change morphology to adapt to cellular energetic demands under both physiological and stress conditions. Cardiomyopathies and neuronal disorders are associated with structure-related dysfunction in mitochondria, but three-dimensional characterizations of the organelles are still lacking. In this study, we combined high-resolution imaging and 3D electron density information provided by cryo-soft X-ray tomography to characterize mitochondria cristae morphology isolated from murine. Using the linear attenuation coefficient, the mitochondria were identified (0.247 +/- 0.04 mu m(-1)) presenting average dimensions of 0.90 +/- 0.20 mu m in length and 0.63 +/- 0.12 mu m in width. The internal mitochondria structure was successfully identified by reaching up the limit of spatial resolution of 35 nm. The internal mitochondrial membranes invagination (cristae) complexity was calculated by the mitochondrial complexity index (MCI) providing quantitative and morphological information of mitochondria larger than 0.90 mm in length. The segmentation to visualize the cristae invaginations into the mitochondrial matrix was possible in mitochondria with MCI >= 7. Altogether, we demonstrated that the MCI is a valuable quantitative morphological parameter to evaluate cristae modelling and can be applied to compare healthy and disease state associated to mitochondria morphology.
  • article 0 Citação(ões) na Scopus
    Human Saphenous Vein Endothelial Cell Isolation and Exposure to Controlled Levels of Shear Stress and Stretch
    (2023) GIRAO-SILVA, Thais; FONSECA-ALANIZ, Miriam Helena; DALLAN, Luis Alberto Oliveira; VALADAO, Iuri Cordeiro; ROCHA, Henrique Oliveira da; KRIEGER, Jose Eduardo; MIYAKAWA, Ayumi Aurea
    Coronary artery bypass graft (CABG) surgery is a procedure to revascularize ischemic myocardium. Saphenous vein remains used as a CABG conduit despite the reduced long-term patency compared to arterial conduits. The abrupt increase of hemodynamic stress associated with the graft arterialization results in vascular damage, especially the endothelium, that may influence the low patency of the saphenous vein graft (SVG). Here, we describe the isolation, characterization, and expansion of human saphenous vein endothelial cells (hSVECs). Cells isolated by collagenase digestion display the typical cobblestone morphology and express endothelial cell markers CD31 and VE-cadherin. To assess the mechanical stress influence, protocols were used in this study to investigate the two main physical stimuli, shear stress and stretch, on arterialized SVGs. hSVECs are cultured in a parallel plate flow chamber to produce shear stress, showing alignment in the direction of the flow and increased expression of KLF2, KLF4, and NOS3. hSVECs can also be cultured in a silicon membrane that allows controlled cellular stretch mimicking venous (low) and arterial (high) stretch. Endothelial cells' F-actin pattern and nitric oxide (NO) secretion are modulated accordingly by the arterial stretch. In summary, we present a detailed method to isolate hSVECs to study the influence of hemodynamic mechanical stress on an endothelial phenotype.
  • article 10 Citação(ões) na Scopus
    NOTCH1 is critical for fibroblast-mediated induction of cardiomyocyte specialization into ventricular conduction system-like cells in vitro
    (2020) SILVA, Agatha Ribeiro da; NERI, Elide A.; TURACA, Lauro Thiago; DARIOLLI, Rafael; FONSECA-ALANIZ, Miriam H.; SANTOS-MIRANDA, Artur; ROMAN-CAMPOS, Danilo; VENTURINI, Gabriela; KRIEGER, Jose E.
    Cardiac fibroblasts are present throughout the myocardium and are enriched in the microenvironment surrounding the ventricular conduction system (VCS). Several forms of arrhythmias are linked to VCS abnormalities, but it is still unclear whether VCS malformations are cardiomyocyte autonomous or could be linked to crosstalk between different cell types. We reasoned that fibroblasts influence cardiomyocyte specialization in VCS cells. We developed 2D and 3D culture models of neonatal rat cardiac cells to assess the influence of cardiac fibroblasts on cardiomyocytes. Cardiomyocytes adjacent to cardiac fibroblasts showed a two-fold increase in expression of VCS markers (NAV1.5 and CONTACTIN 2) and calcium transient duration, displaying a Purkinje-like profile. Fibroblast-conditioned media (fCM) was sufficient to activate VCS-related genes (Irx3, Scn5a, Connexin 40) and to induce action potential prolongation, a hallmark of Purkinge phenotype. fCM-mediated response seemed to be spatially-dependent as cardiomyocyte organoids treated with fCM had increased expression of connexin 40 and NAV1.5 primarily on its outer surface. Finally, NOTCH1 activation in both cardiomyocytes and fibroblasts was required for connexin 40 up-regulation (a proxy of VCS phenotype). Altogether, we provide evidence that cardiac fibroblasts influence cardiomyocyte specialization into VCS-like cells via NOTCH1 signaling in vitro.
  • article 21 Citação(ões) na Scopus
    Aerobic exercise training prevents obesity and insulin resistance independent of the renin angiotensin system modulation in the subcutaneous white adipose tissue
    (2019) AMERICO, Anna Laura V.; MULLER, Cynthia R.; VECCHIATTO, Bruno; MARTUCCI, Luiz Felipe; FONSECA-ALANIZ, Miriam H.; EVANGELISTA, Fabiana S.
    We investigate the effects of aerobic exercise training (AET) on the thermogenic response, substrate metabolism and renin angiotensin system (RAS) in the subcutaneous white adipose tissue (SC-WAT) of mice fed cafeteria diet (CAF). Male C57BL/6J mice were assigned into groups CHOW-SED (chow diet, sedentary; n = 10), CHOW-TR (chow diet, trained; n = 10), CAF-SED (CAF, sedentary; n = 10) and CAF-TR (CAF, trained; n = 10). AET consisted in running sessions of 60 min at 60% of maximal speed, five days per week for eight weeks. The CAF-SED group showed higher body weight and adiposity, glucose intolerance and insulin resistance (IR), while AET prevented such damages in CAF-TR group. AET reduced the p-AKT/t-AKT ratio and increased ATGL expression in CHOW-TR and CAF-TR groups and increased t-HSL and p-HSL/t-HSL ratio in CAF-TR. AET prevented adipocyte hypertrophy in CAF-TR group and increased UCP-1 protein expression only in CHOW-TR. Serum ACE2 increased in CHOW-TR and CAF-TR groups, and Ang (1-7) increased in the CHOW-TR group. In the SC-WAT, CAF-TR group increased the expression of AT1, AT2 and Mas receptors, whereas CHOW-TR increased Ang (1-7) and Ang (1-7)/Ang II ratio in SC-WAT. No changes were observed in ACE and Ang II. Positive correlations were observed between UCP-1 and kITT (r = 0.6), between UCP-1 and Ang (1-7) concentration (r = 0.6), and between UCP-1 and Ang (1-7)/Ang II ratio (r = 0.7). In conclusion, the AET prevented obesity and IR, reduced insulin signaling proteins and increased lipolysis signaling proteins in the SC-WAT. In addition, the CAF diet precludes the AET-induced thermogenic response and the partial modulation of the RAS suggests that the protective effect of AET against obesity and IR could not be associated with SC-WAT RAS.