MIRIAN YUMIE NISHI

(Fonte: Lattes)
Índice h a partir de 2011
21
Projetos de Pesquisa
Unidades Organizacionais
LIM/42 - Laboratório de Hormônios e Genética Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 34
  • article 18 Citação(ões) na Scopus
    Combined pituitary hormone deficiency caused by PROP1 mutations: update 20 years post-discovery
    (2019) CORREA, Fernanda A.; NAKAGUMA, Marilena; MADEIRA, Joao L. O.; NISHI, Mirian Y.; ABRAO, Milena G.; JORGE, Alexander A. L.; CARVALHO, Luciani R.; ARNHOLD, Ivo J. P.; MENDONCA, Berenice B.
    The first description of patients with combined pituitary hormone deficiencies (CPHD) caused by PROP1 mutations was made 20 years ago. Here we updated the clinical and genetic characteristics of patients with PROP1 mutations and summarized the phenotypes of 14 patients with 7 different pathogenic PROP1 mutations followed at the Hospital das Clinicas of the University of Sao Paulo. In addition to deficiencies in GH, TSH, PRL and gonadotropins some patients develop late ACTH deficiency. Therefore, patients with PROP1 mutations require permanent surveillance. On magnetic resonance imaging, the pituitary stalk is normal, and the posterior lobe is in the normal position. The anterior lobe in patients with PROP1 mutations is usually hypoplastic but may be normal or even enlarged. Bi-allelic PROP1 mutations are currently the most frequently recognized genetic cause of CPHD worldwide. PROP1 defects occur more frequently among offspring of consanguineous parents and familial cases, but they also occur in sporadic cases, especially in countries in which the prevalence of PROP1 mutations is relatively high. We classified all reported PROP1 variants described to date according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines: 29 were pathogenic, 2 were likely pathogenic, and 2 were of unknown significance. An expansion of the phenotype of patients with PROP1 mutations was observed since the first description 20 years ago: variable anterior pituitary size, different pathogenic mutations, and late development of ACTH deficiency. PROP1 mutations are the most common cause of autosomal recessive CPHD with a topic posterior pituitary lobe.
  • article 28 Citação(ões) na Scopus
    Two rare loss-of-function variants in the STAG3 gene leading to primary ovarian insufficiency
    (2019) FRANCA, Monica M.; NISHI, Mirian Y.; FUNARI, Mariana F. A.; LERARIO, Antonio M.; BARACAT, Edmund C.; HAYASHIDA, Sylvia A. Y.; MACIEL, Gustavo A. R.; JORGE, Alexander A. L.; MENDONCA, Berenice B.
    Background/Aim: Primary ovarian insufficiency (POI) is characterized by primary or secondary amenorrhea, infertility, low estradiol levels, and increased gonadotropin levels. Most cases of POI remain unsolved even after exhaustive investigation. Here, we performed a targeted massively parallel sequencing to identify the genetic diagnosis of primary ovarian insufficiency (POI) in a Brazilian patient. Patient and methods: An adopted 21-year-old Brazilian woman with isolated POI was selected. A custom SureSelect(xT) DNA target enrichment panel was designed and sequenced on an Illumina NextSeq 500 sequencer. The variants were confirmed using Sanger sequencing. Results: Two rare heterozygous pathogenic variants in the STAG3 gene were identified in our patient. An unpublished 1-bp duplication c.291dupC (p.Asn98Glnfs*2) and one stop codon variant c.1950C > A (p.Tyr650*) were identified in the STAG3 gene. Both undescribed heterozygous variants were absent in the public databases [1000Genomes, Exome Aggregation Consortium (ExAC), National Heart, Lung, and Blood Institute Exome Variant Server (NHLBI/EVS), database of Single Nucleotide Polymorphisms (dbSNP), Genome Aggregation Database (gnomAD)], and Online Archive of Brazilian Mutations (ABraOM) databases. Moreover, neither heterozygous variants were found in 400 alleles from fertile Brazilian women screened by Sanger sequencing. The parents' DNA was not available to segregate these variants. Conclusion: Our results suggested that POI is caused by pathogenic compound heterozygous variants in the STAG3 gene, supporting the key role of the STAG3 gene in the etiology of primary ovarian insufficiency.
  • article 40 Citação(ões) na Scopus
    Genetic Disorders in Prenatal Onset Syndromic Short Stature Identified by Exome Sequencing
    (2019) HOMMA, Thais Kataoka; FREIRE, Bruna Lucheze; KAWAHIRA, Rachel Sayuri Honjo; DAUBER, Andrew; FUNARI, Mariana Ferreira de Assis; LERARIO, Antonio Marcondes; NISHI, Mirian Yumie; ALBUQUERQUE, Edoarda Vasco de; VASQUES, Gabriela de Andrade; COLLETT-SOLBERG, Paulo Ferrez; SUGAYAMA, Sofia Mizuho Miura; BERTOLA, Debora Romeo; KIM, Chong Ae; ARNHOLD, Ivo Jorge Prado; MALAQUIAS, Alexsandra Christianne; JORGE, Alexander Augusto de Lima
    Objective To perform a prospective genetic investigation using whole exome sequencing of a group of patients with syndromic short stature born small for gestational age of unknown cause. Study design For whole exome sequencing analysis, we selected 44 children born small for gestational age with persistent short stature, and additional features, such as dysmorphic face, major malformation, developmental delay, and/or intellectual disability. Seven patients had negative candidate gene testing based on clinical suspicion and 37 patients had syndromic conditions of unknown etiology. Results Of the 44 patients, 15 (34%) had pathogenic/likely pathogenic variants in genes already associated with growth disturbance: COL2A1 (n = 2), SRCAP (n = 2), AFF4, ACTG1, ANKRD11, BCL11B, BRCA1, CDKN1C, GINS1, INPP5K, KIF11, KMT2A, and POC1A (n = 1 each). Most of the genes found to be deleterious participate in fundamental cellular processes, such as cell replication and DNA repair. Conclusions The rarity and heterogeneity of syndromic short stature make the clinical diagnosis difficult. Whole exome sequencing allows the diagnosis of previously undiagnosed patients with syndromic short stature.
  • article 8 Citação(ões) na Scopus
    Amplification of the Insulin-Like Growth Factor 1 Receptor Gene Is a Rare Event in Adrenocortical Adenocarcinomas: Searching for Potential Mechanisms of Overexpression
    (2014) RIBEIRO, Tamaya Castro; JORGE, Alexander Augusto; ALMEIDA, Madson Q.; MARIANI, Beatriz Marinho de Paula; NISHI, Mirian Yumi; MENDONCA, Berenice Bilharinho; FRAGOSO, Maria Candida Barisson Villares; LATRONICO, Ana Claudia
    Context. IGF1R overexpression appears to be a prognostic biomarker of metastatic pediatric adrenocortical tumors. However, the molecular mechanisms that are implicated in its upregulation remain unknown. Aim. To investigate the potential mechanisms involved in IGF1R overexpression. Patients and Methods. We studied 64 adrenocortical tumors. IGF1R copy number variation was determined in all patients using MLPA and confirmed using real time PCR. In a subgroup of 32 patients, automatic sequencing was used to identify IGF1R allelic variants and the expression of microRNAs involved in IGF1R regulation by real time PCR. Results. IGF1R amplification was detected in an adrenocortical carcinoma that was diagnosed in a 46-year-old woman with Cushing's syndrome and virilization. IGF1R overexpression was demonstrated in this case. In addition, gene amplification of other loci was identified in this adrenocortical malignant tumor, but no IGF1R copy number variation was evidenced in the remaining cases. Automatic sequencing revealed three known polymorphisms but they did not correlate with its expression. Expression of miR-100, miR-145, miR-375, and miR-126 did not correlate with IGF1R expression. Conclusion. We demonstrated amplification and overexpression of IGF1R gene in only one adrenocortical carcinoma, suggesting that these combined events are uncommon. In addition, IGF1R polymorphisms and abnormal microRNA expression did not correlate with IGF1R upregulation in adrenocortical tumors.
  • conferenceObject
    Whole-Exome Sequencing Reveals RAD51B Variant in Two Sisters with Primary Ovarian Failure
    (2016) FRANCA, Monica; FUNARI, Mariana; NISHI, Mirian; DOMENICE, Sorahia; LATRONICO, Ana Claudia; JORGE, Alexander; LERARIO, Antonio; MENDONCA, Berenice
  • article 3 Citação(ões) na Scopus
    High-throughput Sequencing to Identify Monogenic Etiologies in a Preselected Polycystic Ovary Syndrome Cohort
    (2022) CRESPO, Raiane P.; ROCHA, Thais P.; MONTENEGRO, Luciana R.; NISHI, Mirian Y.; JORGE, Alexander A. L.; MACIEL, Gustavo A. R.; BARACAT, Edmund; LATRONICO, Ana Claudia; MENDONCA, Berenice B.; GOMES, Larissa G.
    Context: Polycystic ovary syndrome (PCOS) etiology remains to be elucidated, but familial clustering and twin studies have shown a strong heritable component. Objective: The purpose of this study was to identify rare genetic variants that are associated with the etiology of PCOS in a preselected cohort. Methods: This prospective study was conducted among a selected group of women with PCOS. The study's inclusion criteria were patients with PCOS diagnosed by the Rotterdam criteria with the following phenotypes: severe insulin resistance (IR), normoandrogenic-normometabolic phenotype, adrenal hyperandrogenism, primary amenorrhea, and familial PCOS. Forty-five patients were studied by target sequencing, while 8 familial cases were studied by whole exome sequencing. Results: Patients were grouped according to the inclusion criteria with the following distribution: 22 (41.5%) with severe IR, 13 (24.5%) with adrenal hyperandrogenism, 7 (13.2%) with normoandrogenic phenotype, 3 (5.7%) with primary amenorrhea, and 8 (15.1%) familial cases. DNA sequencing analysis identified 1 pathogenic variant in LMNA, 3 likely pathogenic variants in INSR, PIK3R1, and DLK1, and 6 variants of uncertain significance level with interesting biologic rationale in 5 genes (LMNA, GATA4, NR5A1, BMP15, and FSHR). LMNA was the most prevalent affected gene in this cohort (3 variants). Conclusion: Several rare variants in genes related to IR were identified in women with PCOS. Although IR is a common feature of PCOS, patients with extreme or atypical phenotype should be carefully evaluated to rule out monogenic conditions.
  • article 0 Citação(ões) na Scopus
    Allelic Variants in Established Hypopituitarism Genes Expand Our Knowledge of the Phenotypic Spectrum
    (2021) NAKAGUMA, Marilena; FERREIRA, Nathalia Garcia Bianchi Pereira; BENEDETTI, Anna Flavia Figueredo; MADI, Mariana Cotarelli; SILVA, Juliana Moreira; LI, Jun Z.; MA, Qianyi; OZEL, Ayse Bilge; FANG, Qing; NARCIZO, Amanda de Moraes; CARDOSO, Lais Cavalca; MONTENEGRO, Luciana Ribeiro; FUNARI, Mariana Ferreira de Assis; NISHI, Mirian Yumie; ARNHOLD, Ivo Jorge Prado; JORGE, Alexander Augusto de Lima; MENDONCA, Berenice Bilharinho de; CAMPER, Sally Ann; CARVALHO, Luciani R.
    We report four allelic variants (three novel) in three genes previously established as causal for hypopituitarism or related disorders. A novel homozygous variant in the growth hormone gene, GH1 c.171delT (p.Phe 57Leufs*43), was found in a male patient with severe isolated growth hormone deficiency (IGHD) born to consanguineous parents. A hemizygous SOX3 allelic variant (p.Met304Ile) was found in a male patient with IGHD and hypoplastic anterior pituitary. YASARA, a tool to evaluate protein stability, suggests that p.Met304Ile destabilizes the SOX3 protein (Delta Delta G = 2.49 kcal/mol). A rare, heterozygous missense variant in the TALE homeobox protein gene, TGIF1 (c.268C>T:p.Arg90Cys) was found in a patient with combined pituitary hormone deficiency (CPHD), diabetes insipidus, and syndromic features of holoprosencephaly (HPE). This variant was previously reported in a patient with severe holoprosencephaly and shown to affect TGIF1 function. A novel heterozygous TGIF1 variant (c.82T>C:p.Ser28Pro) was identified in a patient with CPHD, pituitary aplasia and ectopic posterior lobe. Both TGIF1 variants have an autosomal dominant pattern of inheritance with incomplete penetrance. In conclusion, we have found allelic variants in three genes in hypopituitarism patients. We discuss these variants and associated patient phenotypes in relation to previously reported variants in these genes, expanding our knowledge of the phenotypic spectrum in patient populations.
  • article 102 Citação(ões) na Scopus
    Heterozygous Mutations in Natriuretic Peptide Receptor-B (NPR2) Gene as a Cause of Short Stature in Patients Initially Classified as Idiopathic Short Stature
    (2013) VASQUES, Gabriela A.; AMANO, Naoko; DOCKO, Ana J.; FUNARI, Mariana F. A.; QUEDAS, Elisangela P. S.; NISHI, Mirian Y.; ARNHOLD, Ivo J. P.; HASEGAWA, Tomonobu; JORGE, Alexander A. L.
    Context: Based on the stature observed in relatives of patients with acromesomelic dysplasia, type Maroteaux, homozygous for mutations in natriuretic peptide receptor B gene (NPR2), it has been suggested that heterozygous mutations in this gene could be responsible for the growth impairment observed in some children with idiopathic short stature (ISS). Objective: The objective of the study was to investigate the presence of NPR2 mutations in a group of patients with ISS. Patients and Methods: The NPR2 coding region was directly sequenced in 47 independent patients with ISS. The functional consequences of NPR2 nonsynonymous variations were established using in vitro cell-based assays. Results: Three novel heterozygous NPR2 mutations were identified: c.226T>C (p.Ser76Pro), c.788G>C (p.Arg263Pro), and c.2455C>T (p.Arg819Cys). These allelic variants were not found in our controls or in the 1000 Genomes database. In silico analysis suggested that the three missense mutations are probably damaging. All of them were selected for in vitro functional evaluation. Cells transfected with the three mutants failed to produce cyclic GMP after treatment with C-type natriuretic peptide. Cells cotransfected with mutant and wild-type-NPR-B (1:1) showed a significant decrease in cGMP levels after C-type natriuretic peptide stimulation in comparison with cells cotrasnfected with empty vector and wild type, suggesting a dominant-negative effect. These three mutations segregated with short stature phenotype in an autosomal dominant pattern (height SD score ranged from -4.5 to -1.7). One of these patients and two relatives have disproportionate short stature, whereas in another patient a nonspecific skeletal abnormality was observed. All three of these patients were treated with recombinant human GH (33-50 mu g/kg.d) without significant height SD score change during therapy. Conclusions: We identified heterozygous NPR2 mutations in 6% of patients initially classified as ISS. Affected patients have mild and variable degrees of short stature without a distinct phenotype. Heterozygous mutations in NPR2 could be an important cause of nonsyndromic familial short stature.
  • article 5 Citação(ões) na Scopus
    Autosomal recessive form of isolated growth hormone deficiency is more frequent than the autosomal dominant form in a Brazilian cohort
    (2014) LIDO, Andria C. V.; FRANCA, Marcela M.; CORREA, Fernanda A.; OTTO, Aline P.; CARVALHO, Luciani R.; QUEDAS, Elisangela P. S.; NISHI, Mirian Y.; MENDONCA, Berenice B.; ARNHOLD, Ivo J. P.; JORGE, Alexander A. L.
    Background: In most studies, the autosomal dominant (type II) form of isolated growth hormone deficiency (IGHD) has been more frequent than the autosomal recessive (type I) form. Our aim was to assess defects in the GH1 in short Brazilian children with different GH secretion status. Subjects and methods: We selected 135 children with postnatal short stature and classified according to the highest GH peak at stimulation tests in: severe IGHD (peak GH <= 3.3 mu g/L, n = 38, all with normal pituitary magnetic resonance imaging); GH peak between 3.3 and 10 mu g/L (n = 76); and GH peak >10 mu g/L (n = 21). The entire coding region of GH1 was sequenced and complete GH1 deletions were assessed by Multiplex Ligation Dependent Probe Amplification and restriction enzyme digestion. Results: Patients with severe IGHD had a higher frequency of consanguinity, were shorter, had lower levels of IGF-1 and IGFBP-3, and despite treatment with lower GH doses had a greater growth response than patients with GH peak >= 3.3 mu g/L. Mutations were found only in patients with severe IGHD (GH peak <3.3 mu g/L). Eight patients had autosomal recessive IGHD: Seven patients were homozygous for GH1 deletions and one patient was compound heterozygous for a GH1 deletion and the novel c.171 + 5G>C point mutation in intron 2, predicted to abolish the donor splice site. Only one patient, who was heterozygous for the c.291 + 1G>T mutation located at the universal donor splice site of intron 3 and predicts exon 3 skipping, had an autosomal dominant form. Conclusion: Analysis of GH1 in a cohort of Brazilian patients revealed that the autosomal recessive form of IGHD was more common than the dominant one, and both were found only in severe IGHD.
  • conferenceObject
    IDENTIFICATION OF NEW GENETIC MODIFIERS OF THE PHENOTYPE IN SHOX HAPLOINSUFFICIENCY
    (2023) DANTAS, N. C. B.; FUNARI, M. F.; ANDRADE, N. L. M.; REZENDE, R. C.; CELLIN, L. P.; LERARIO, A. M.; NISHI, M. Y.; MENDONCA, B. B.; JORGE, A. De Lima