MIRIAN YUMIE NISHI

(Fonte: Lattes)
Índice h a partir de 2011
21
Projetos de Pesquisa
Unidades Organizacionais
LIM/42 - Laboratório de Hormônios e Genética Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 20
  • article 40 Citação(ões) na Scopus
    Genetic Disorders in Prenatal Onset Syndromic Short Stature Identified by Exome Sequencing
    (2019) HOMMA, Thais Kataoka; FREIRE, Bruna Lucheze; KAWAHIRA, Rachel Sayuri Honjo; DAUBER, Andrew; FUNARI, Mariana Ferreira de Assis; LERARIO, Antonio Marcondes; NISHI, Mirian Yumie; ALBUQUERQUE, Edoarda Vasco de; VASQUES, Gabriela de Andrade; COLLETT-SOLBERG, Paulo Ferrez; SUGAYAMA, Sofia Mizuho Miura; BERTOLA, Debora Romeo; KIM, Chong Ae; ARNHOLD, Ivo Jorge Prado; MALAQUIAS, Alexsandra Christianne; JORGE, Alexander Augusto de Lima
    Objective To perform a prospective genetic investigation using whole exome sequencing of a group of patients with syndromic short stature born small for gestational age of unknown cause. Study design For whole exome sequencing analysis, we selected 44 children born small for gestational age with persistent short stature, and additional features, such as dysmorphic face, major malformation, developmental delay, and/or intellectual disability. Seven patients had negative candidate gene testing based on clinical suspicion and 37 patients had syndromic conditions of unknown etiology. Results Of the 44 patients, 15 (34%) had pathogenic/likely pathogenic variants in genes already associated with growth disturbance: COL2A1 (n = 2), SRCAP (n = 2), AFF4, ACTG1, ANKRD11, BCL11B, BRCA1, CDKN1C, GINS1, INPP5K, KIF11, KMT2A, and POC1A (n = 1 each). Most of the genes found to be deleterious participate in fundamental cellular processes, such as cell replication and DNA repair. Conclusions The rarity and heterogeneity of syndromic short stature make the clinical diagnosis difficult. Whole exome sequencing allows the diagnosis of previously undiagnosed patients with syndromic short stature.
  • article 26 Citação(ões) na Scopus
    Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency
    (2020) FRANCA, Monica M.; FUNARI, Mariana F. A.; LERARIO, Antonio M.; SANTOS, Mariza G.; NISHI, Mirian Y.; DOMENICE, Sorahia; MORAES, Daniela R.; COSTALONGA, Everlayny F.; MACIEL, Gustavo A. R.; MACIEL-GUERRA, Andrea T.; GUERRA-JUNIOR, Gil; MENDONCA, Berenice B.
    Primary ovarian insufficiency (POI) is a heterogeneous disorder associated with several genes. The majority of cases are still unsolved. Our aim was to identify the molecular diagnosis of a Brazilian cohort with POI. Genetic analysis was performed using a customized panel of targeted massively parallel sequencing (TMPS) and the candidate variants were confirmed by Sanger sequencing. Additional copy number variation (CNV) analysis of TMPS samples was performed by CONTRA. Fifty women with POI (29 primary amenorrhea and 21 secondary amenorrhea) of unknown molecular diagnosis were included in this study, which was conducted in a tertiary referral center of clinical endocrinology. A genetic defect was obtained in 70% women with POI using the customized TMPS panel. Twenty-four pathogenic variants and two CNVs were found in 48% of POI women. Of these variants, 16 genes were identified as BMP8B, CPEB1, INSL3, MCM9, GDF9, UBR2, ATM, STAG3, BMP15, BMPR2, DAZL, PRDM1, FSHR, EIF4ENIF1, NOBOX, and GATA4. Moreover, a microdeletion and microduplication in the CPEB1 and SYCE1 genes, respectively, were also identified in two distinct patients. The genetic analysis of eleven patients was classified as variants of uncertain clinical significance whereas this group of patients harbored at least two variants in different genes. Thirteen patients had benign or no rare variants, and therefore the genetic etiology remained unclear. In conclusion, next-generation sequencing (NGS) is a highly effective approach to identify the genetic diagnoses of heterogenous disorders, such as POI. A molecular etiology allowed us to improve the disease knowledge, guide decisions about prevention or treatment, and allow familial counseling avoiding future comorbidities.
  • conferenceObject
    DEAH-Box Helicase 37defects (DXH37) Defects Are a Novel Cause of 46,XY Gonadal Dysgenesis
    (2018) GOMES, Nathalia; SILVA, Thatiana; LERARIO, Antonio; BATISTA, Rafael Loch; FARIA JUNIOR, Jose Antonio; MORAES, Daniela; COSTA, Elaine Maria Frade; NISHI, Mirian; CARVALHO, Luciani Renata; FORCLAZ, Maria Veronica; PAPAZIAN, Regina; MARTINEZ-AGUAYO, Alejandro; PAULA, Leila Pedroso de; CARVALHO, Filomena Marino; VILAIN, Erick; BARSEGHYAN, Hayk Barseghyan; KEEGAN, Catherine; DOMENICE, Sorahia; MENDONCA, Berenice Bilharinho
  • article 0 Citação(ões) na Scopus
    Allelic Variants in Established Hypopituitarism Genes Expand Our Knowledge of the Phenotypic Spectrum
    (2021) NAKAGUMA, Marilena; FERREIRA, Nathalia Garcia Bianchi Pereira; BENEDETTI, Anna Flavia Figueredo; MADI, Mariana Cotarelli; SILVA, Juliana Moreira; LI, Jun Z.; MA, Qianyi; OZEL, Ayse Bilge; FANG, Qing; NARCIZO, Amanda de Moraes; CARDOSO, Lais Cavalca; MONTENEGRO, Luciana Ribeiro; FUNARI, Mariana Ferreira de Assis; NISHI, Mirian Yumie; ARNHOLD, Ivo Jorge Prado; JORGE, Alexander Augusto de Lima; MENDONCA, Berenice Bilharinho de; CAMPER, Sally Ann; CARVALHO, Luciani R.
    We report four allelic variants (three novel) in three genes previously established as causal for hypopituitarism or related disorders. A novel homozygous variant in the growth hormone gene, GH1 c.171delT (p.Phe 57Leufs*43), was found in a male patient with severe isolated growth hormone deficiency (IGHD) born to consanguineous parents. A hemizygous SOX3 allelic variant (p.Met304Ile) was found in a male patient with IGHD and hypoplastic anterior pituitary. YASARA, a tool to evaluate protein stability, suggests that p.Met304Ile destabilizes the SOX3 protein (Delta Delta G = 2.49 kcal/mol). A rare, heterozygous missense variant in the TALE homeobox protein gene, TGIF1 (c.268C>T:p.Arg90Cys) was found in a patient with combined pituitary hormone deficiency (CPHD), diabetes insipidus, and syndromic features of holoprosencephaly (HPE). This variant was previously reported in a patient with severe holoprosencephaly and shown to affect TGIF1 function. A novel heterozygous TGIF1 variant (c.82T>C:p.Ser28Pro) was identified in a patient with CPHD, pituitary aplasia and ectopic posterior lobe. Both TGIF1 variants have an autosomal dominant pattern of inheritance with incomplete penetrance. In conclusion, we have found allelic variants in three genes in hypopituitarism patients. We discuss these variants and associated patient phenotypes in relation to previously reported variants in these genes, expanding our knowledge of the phenotypic spectrum in patient populations.
  • article 3 Citação(ões) na Scopus
    Brazilian cohort and genes encoding for drug-metabolizing enzymes and drug transporters
    (2020) KIM, Vera; WAL, Thijs van der; NISHI, Miriam Yumie; MONTENEGRO, Luciana Ribeiro; CARRILHO, Flair Jose; HOSHIDA, Yujin; ONO, Suzane Kioko
    Background & aim: Genetic variability in drug absorption, distribution, metabolism and excretion (ADME) genes contributes to the high heterogeneity of drug responses. The present study investigated polymorphisms of ADME genes frequencies and compared the findings with populations from other continents, available in the 1000 Genome Project (1 KGP) and the Exome Aggregation Consortium (ExAC) databases. Methodology & results: We conducted a study of 100 patients in Brazil and a total of 2003 SNPs were evaluated by targeted next-generation sequencing in 148 genes, including Phase I enzymes (n = 50), Phase II enzymes (n = 38) and drug transporters (n = 60). Overall, the distribution of minor allele frequency (MAF) suggests that the distribution of 2003 SNPs is similar between Brazilian cohort, 1 KGP and ExAC; however, we found moderate SNP allele-frequency divergence between Brazilian cohort and both 1000 KGP and ExAC. These differences were observed in several relevant genes including CYP3A4, NAT2 and SLCO1B1. Conclusion: We concluded that the Brazilian population needs clinical assessment of drug treatment based on individual genotype rather than ethnicity.
  • conferenceObject
    Low Frequency of Pathogenic Allelic Variants in the 46,XY Differences of Sex Development (DSD)-Related Genes in Small for Gestational Age Children with Hypospadias
    (2019) BRAGA, B. L.; GOMES, L. N.; NISHI, M. Y.; FREIRE, B. L.; BATISTA, R. L.; FUNARI, M. F. A.; COSTA, E. M. F.; LERARIO, A. M.; DOMENICE, S.; JUNIOR, J. A. D. F.; JORGE, A. A. L.; MENDONCA, B. B.
  • article 2 Citação(ões) na Scopus
    Variants in 46,XY DSD-Related Genes in Syndromic and Non-Syndromic Small for Gestational Age Children with Hypospadias
    (2022) BRAGA, B. L.; GOMES, N. L.; NISHI, M. Y.; FREIRE, B. L.; BATISTA, R. L.; FARIA JUNIOR, J. A. D.; FUNARI, M. F. A.; BENEDETTI, A. F. F.; NARCIZO, A. De Moraes; CARDOSO, L. Cavalca; LERARIO, A. M.; GUERRA-JUNIOR, G.; COSTA, E. M. F.; DOMENICE, S.; JORGE, A. A. L.; MENDONCA, B. B.
    Hypospadias is a common congenital disorder of male genital formation. Children born small for gestational age (SGA) present a high frequency of hypospadias of undetermined etiology. No previous study investigated the molecular etiology of hypospadias in boys born SGA using massively parallel sequencing. Our objective is to report the genetic findings of a cohort of patients born SGA with medium or proximal hypospadias. We identified 46 individuals with this phenotype from a large cohort of 46,XY DSD patients, including 5 individuals with syndromic features. DNA samples from subjects were studied by either whole exome sequencing or target gene panel approach. Three of the syndromic patients have 5 main clinical features of Silver-Russell syndrome (SRS) and were first studied by MLPA. Among the syndromic patients, loss of DNA methylation at the imprinting control region H19/IGF2 was identified in 2 individuals with SRS clinical diagnosis. Two novel pathogenic variants in compound heterozygous state were identified in the CUL7 gene establishing the diagnosis of 3M syndrome in one patient, and a novel homozygous variant in TRIM37 was identified in another boy with Mulibrey nanism phenotype. Among the non-syndromic subjects, 7 rare heterozygous variants were identified in 6 DSD-related genes. However, none of the variants found can explain the phenotype by themselves. In conclusion, a genetic defect that clarifies the etiology of hypospadias was not found in most of the non-syndromic SGA children, supporting the hypothesis that multifactorial causes, new genes, and/or unidentified epigenetic defects may have an influence in this condition.
  • article 33 Citação(ões) na Scopus
    FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies
    (2015) CORREA, Fernanda A.; TRARBACH, Ericka B.; TUSSET, Cintia; LATRONICO, Ana Claudia; MONTENEGRO, Luciana R.; CARVALHO, Luciani R.; FRANCA, Marcela M.; OTTO, Aline P.; COSTALONGA, Everlayny F.; BRITO, Vinicius N.; ABREU, Ana Paula; NISHI, Mirian Y.; JORGE, Alexander A. L.; ARNHOLD, Ivo J. P.; SIDIS, Yisrael; PITTELOUD, Nelly; MENDONCA, Berenice B.
    The genetic aetiology of congenital hypopituitarism (CH) is not entirely elucidated. FGFR1 and PROKR2 loss-of-function mutations are classically involved in hypogonadotrophic hypogonadism (HH), however, due to the clinical and genetic overlap of HH and CH; these genes may also be involved in the pathogenesis of CH. Using a candidate gene approach, we screened 156 Brazilian patients with combined pituitary hormone deficiencies (CPHD) for loss-of-function mutations in FGFR1 and PROKR2. We identified three FGFR1 variants (p.Arg448Trp, p.Ser107Leu and p.Pro772Ser) in four unrelated patients (two males) and two PROKR2 variants (p. Arg85Cys and p. Arg248Glu) in two unrelated female patients. Five of the six patients harbouring the variants had a first-degree relative that was an unaffected carrier of it. Results of functional studies indicated that the new FGFR1 variant p.Arg448Trp is a loss-of-function variant, while p.Ser107Leu and p.Pro772Ser present signalling activity similar to the wild-type form. Regarding PROKR2 variants, results from previous functional studies indicated that p.Arg85Cys moderately compromises receptor signalling through both MAPK and Ca2+ pathways while p.Arg248Glu decreases calcium mobilization but has normal MAPK activity. The presence of loss-of-function variants of FGFR1 and PROKR2 in our patients with CPHD is indicative of an adjuvant and/or modifier effect of these rare variants on the phenotype. The presence of the same variants in unaffected relatives implies that they cannot solely cause the phenotype. Other associated genetic and/or environmental modifiers may play a role in the aetiology of this condition.
  • article 25 Citação(ões) na Scopus
    Exome Sequencing Reveals the POLR3H Gene as a Novel Cause of Primary Ovarian Insufficiency
    (2019) FRANCA, Monica M.; HAN, Xingfa; FUNARI, Mariana F. A.; LERARIO, Antonio M.; NISHI, Mirian Y.; FONTENELE, Eveline G. P.; DOMENICE, Sorahia; JORGE, Alexander A. L.; GARCIA-GALIANO, David; ELIAS, Carol F.; MENDONCA, Berenice B.
    Context: Primary ovarian insufficiency (POI) is a cause of female infertility. However, the genetic etiology of this disorder remains unknown in most patients with POI. Objective: To investigate the genetic etiology of idiopathic POI. Patients and Methods: We performed whole-exome sequencing of 11 families with idiopathic POI. To gain insights into the potential mechanisms associated with this mutation, we generated two mouse lines via clustered regularly interspaced short palindromic repeats/Cas9 technology. Results: A pathogenic homozygous missense mutation (c.149A>G; p.Asp50G ly) in the POLR3H gene in two unrelated families was identified. Pathogenic mutations in this subunit have not been associated with human disorders. Loss-of-function Polr3h mutation in mice caused early embryonic lethality. Mice with homozygous point mutation (Polr3h(D50G)) were viable but showed delayed pubertal development, characterized by late first estrus or preputial separation. The Polr3h(D50G) female and male mice showed decreased fertility later in life, associated with small litter size and increased time to pregnancy or to impregnate a female. Polr3h(D50G) mice displayed decreased expression of ovarian Foxo3a and lower numbers of primary follicles. Conclusion: Our manuscript provides a case of POI caused by missense mutation in POLR3H, expanding the knowledge of molecular pathways of the ovarian function and human infertility. Screening of the POLR3H gene may elucidate POI cases without previously identified genetic causes, supporting approaches of genetic counseling.
  • article 19 Citação(ões) na Scopus
    Mutations in MAP3K1 that cause 46,XY disorders of sex development disrupt distinct structural domains in the protein
    (2019) CHAMBERLIN, Adam; HUETHER, Robert; MACHADO, Aline Z.; GRODEN, Michael; LIU, Hsiao-Mei; UPADHYAY, Kinnari; VIVIAN, O.; GOMES, Nathalia L.; LERARIO, Antonio M.; NISHI, Mirian Y.; COSTA, Elaine M. F.; MENDONCA, Berenice; DOMENICE, Sorahia; VELASCO, Jacqueline; LOKE, Johnny; OSTRER, Harry
    Missense mutations in the gene, MAP3K1, are a common cause of 46,XY gonadal dysgenesis, accounting for 15-20% of cases [Ostrer, 2014, Disorders of sex development (DSDs): an update. J. Clin. Endocrinol. Metab., 99, 1503-1509]. Functional studies demonstrated that all of these mutations cause a protein gain-of-function that alters co-factor binding and increases phosphorylation of the downstream MAP kinase pathway targets, MAPK11, MAP3K and MAPK1. This dysregulation of the MAP kinase pathway results in increased CTNNB1, increased expression of WNT4 and FOXL2 and decreased expression of SRY and SOX9. Unique and recurrent pathogenic mutations cluster in three semi-contiguous domains outside the kinase region of the protein, a newly identified N-terminal domain that shares homology with the Guanine Exchange Factor (residues Met164 to Glu231), a Plant HomeoDomain (residues Met442 to Trp495) and an ARMadillo repeat domain (residues Met566 to Glu862). Despite the presence of the mutation clusters and clinical data, there exists a dearth of mechanistic insights behind the development imbalance. In this paper, we use structural modeling and functional data of these mutations to understand alterations of the MAP3K1 protein and the effects on protein folding, binding and downstream target phosphorylation. We show that these mutations have differential effects on protein binding depending on the domains in which they occur. These mutations increase the binding of the RHOA, MAP3K4 and FRAT1 proteins and generally decrease the binding of RAC1. Thus, pathologies in MAP3K1 disrupt the balance between the pro-kinase activities of the RHOA and MAP3K4 binding partners and the inhibitory activity of RAC1.