ANA LUCIA GARIPPO

(Fonte: Lattes)
Índice h a partir de 2011
3
Projetos de Pesquisa
Unidades Organizacionais

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 10 Citação(ões) na Scopus
    Enriched inorganic compounds in diesel exhaust particles induce mitogen-activated protein kinase activation, cytoskeleton instability, and cytotoxicity in human bronchial epithelial cells
    (2015) SERIANI, Robson; JUNQUEIRA, Mara S.; CARVALHO-SOUSA, Claudia E.; ARRUDA, Alessandra Ct.; MARTINEZ, Diana; ALENCAR, Adriano M.; GARIPPO, Ana L.; BRITO, Jose Mara; MARTINS, Milton A.; SALDIVA, Paulo H. N.; NEGRI, Elnara M.; MAUAD, Thais; MACCHIONE, Mariangela
    This study assessed the effects of the diesel exhaust particles on ERR and JNK MAPKs activation, cell rheology (viscoelasticity), and cytotoxicity in bronchial epithelial airway cells (BEAS-2B). Crude DEP and DEP after extraction with hexane (DEP/HEX) were utilized. The partial reduction of some DEP/HEX organics increased the biodisponibility of many metallic elements. JNK and ERR were activated simultaneously by crude DEP with no alterations in viscoelasticity of the cells. Mitochondrial activity, however, revealed a decrease through the MIT assay. DEP/HEX treatment increased viscoelasticity and cytotoxicity (membrane damage), and also activated JNK. Our data suggest that the greater bioavailability of metals could be involved in JNK activation and, consequently, in the reduction of fiber coherence and increase in the viscoelasticity and cytotoxicity of BEAS cells. The adverse findings detected after exposure to crude DEP and to DEP/HEX reflect the toxic potential of diesel compounds. Considering the fact that the cells of the respiratory epithelium are the first line of defense between the body and the environment, our data contribute to a better understanding of the pathways leading to respiratory cell injury and provide evidence for the onset of or worsening of respiratory diseases caused by inorganic compounds present in DEP.
  • article 25 Citação(ões) na Scopus
    A comparative study of extracellular matrix remodeling in two murine models of emphysema
    (2013) LOPES, F. D. T. Q. S.; TOLEDO, A. C.; OLIVO, C. R.; PRADO, C. M.; LEICK, E. A.; MEDEIROS, M. C.; SANTOS, A. B. G.; GARIPPO, A.; MARTINS, M. A.; MAUAD, T.
    A single instillation of porcine pancreatic elastase (PPE) results in significant airspace enlargement on the 28th day after instillation, whereas cigarette smoke (CS) exposure requires 6 months to produce mild emphysema in rodents. Considering that there are differences in the pathogenesis of parenchymal destruction in these different experimental models, it is likely that there may be different patterns of extracellular matrix (ECM) remodeling. To evaluate ECM remodeling, C57BL/6 mice were submitted to either a nasal drop of PPE (PPE 28 Days) or exposed for 6 months to cigarette smoke (CS 6 months). Control groups received either an intranasal instillation of saline solution (Saline 28 Days) or remained without any smoke inhalation for six months (Control 6 months). We measured the mean linear intercept and the volume proportion of collagen type I, collagen type III, elastin and fibrillin. We used emission-scanning confocal microscopy to verify the fiber distribution. Both models induced increased mean linear intercept in relation to the respective controls, being larger in the elastase model in relation to the CS model. In the CS model, emphysema was associated with an increase in the volume proportion of fibrillin, whereas in the PPE model there was an increase in the parenchymal elastin content. In both models, there was an increase in collagen type III, which was higher in the CS-exposed mice. We concluded that ECM remodeling is different in the two most used experimental models of emphysema.