BRUNA LUCHEZE FREIRE

(Fonte: Lattes)
Índice h a partir de 2011
8
Projetos de Pesquisa
Unidades Organizacionais
LIM/42 - Laboratório de Hormônios e Genética Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • article 8 Citação(ões) na Scopus
    Growth and Clinical Characteristics of Children with Floating-Harbor Syndrome: Analysis of Current Original Data and a Review of the Literature
    (2020) HOMMA, Thais K.; FREIRE, Bruna L.; HONJO, Rachel; DAUBER, Andrew; FUNARI, Mariana F. A.; LERARIO, Antonio M.; ALBUQUERQUE, Edoarda V. A.; VASQUES, Gabriela A.; BERTOLA, Debora R.; KIM, Chong A.; MALAQUIAS, Alexsandra C.; JORGE, Alexander A. L.
    Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by dysmorphic facial features, short stature, and expressive language delay. Objective: The aim of this study was to describe a cohort of patients with FHS and review the literature about the response to recombinant human growth hormone (rhGH) therapy. Methods: Anthropometric and laboratory data from 7 patients with FHS were described. The molecular diagnosis was established by multigene analysis. Moreover, we reviewed the literature concerning patients with FHS treated with rhGH. Results: All 7 patients were born small for gestational age. At first evaluation, 6 patients had a height standard deviation score (SDS) <=-2 and 1 had short stature in relation to their target height. Bone age was usually delayed, which rapidly advanced during puberty. Nonspecific skeletal abnormalities were frequently noticed, and normal to elevated plasma IGF-I levels were observed in all except 1 patient with growth hormone deficiency. Information about 20 patients with FHS treated with rhGH was analyzed (4 from our cohort and 16 from the literature). The median height changes during the treatment period (approx. 2.9 years) were 1.1 SDS (range from -0.4 to 3.1). Nontreated patients had an adult height SDS of -4.1 +/- 1.2 (n = 10) versus -2.6 +/- 0.8 SDS (n = 7, p 0.012) for treated patients. Conclusion: We observed a laboratory profile compatible with IGF-1 insensitivity in some patients with FHS. Nevertheless, our study suggests that children with FHS may be considered as candidates for rhGH therapy. Further studies are necessary to establish the real benefit and safety of rhGH therapy in these patients.
  • article 5 Citação(ões) na Scopus
    Growth Hormone insensitivity (Laron syndrome): Report of a new family and review of Brazilian patients
    (2019) VILLELA, Thais R.; FREIRE, Bruna L.; BRAGA, Nathalia T. P.; ARANTES, Rodrigo R.; FUNARI, Mariana F. A.; JORGE, Alexander A. L.; SILVA, Ivani N.
    Laron's syndrome (LS) is a rare genetic disorder characterized by insensitivity to growth hormone (GH). Up to the present time, over 70 mutations of GH receptor (GHR) gene have been identified leading to GH/insulin-like growth factor type 1 (IGF1) signaling pathway defect. The number of LS patients worldwide is unknown, as many are probably undiagnosed. We report two sibs from a consanguineous family from Minas Gerais, southeastern Brazil. The parents have three children. The older, a 4-years-old girl was 80.2 cm tall (-5.7 SDS height/age), and the youngest sister, aged 3 years, was 73.2 cm tall (-5.82 SDS height/age). Their clinical and biochemical features are typical of LS patients, such as high serum level of GH and low IGF1 concentrations. A homozygous c.1A>T nucleotide substitution in GHR exon 2 in the probands' samples was identified. Their parents and healthy sister are heterozygous for the same variant that abolishes the translation initiation codon of GHR. This mutation has not been reported in Brazilian patients and was previously associated with an LS phenotype in a single 29-year-old Spanish man. In addition to this case report, we summarize the main characteristics and molecular data of the 21 LS Brazilian patients who have been published to date.
  • article 28 Citação(ões) na Scopus
    Homozygous loss of function BRCA1 variant causing a Fanconi-anemia-like phenotype, a clinical report and review of previous patients
    (2018) FREIRE, Bruna L.; HOMMA, Thais K.; FUNARI, Mariana F. A.; LERARIO, Antonio M.; LEAL, Aline M.; VELLOSO, Elvira D. R. P.; MALAQUIAS, Alexsandra C.; JORGE, Alexander A. L.
    Background: Fanconi Anemia (FA) is a rare and heterogeneous genetic syndrome. It is associated with short stature, bone marrow failure, high predisposition to cancer, microcephaly and congenital malformation. Many genes have been associated with FA. Previously, two adult patients with biallelic pathogenic variant in Breast Cancer 1 gene (BRCA1) had been identified in Fanconi Anemia-like condition. Clinical report: The proband was a 2.5 year-old girl with severe short stature, microcephaly, neurodevelopmental delay, congenital heart disease and dysmorphic features. Her parents were third degree cousins. Routine screening tests for short stature was normal. Methods: We conducted whole exome sequencing (WES) of the proband and used an analysis pipeline to identify rare nonsynonymous genetic variants that cause short stature. Results: We identified a homozygous loss-of-function BRCA1 mutation (c.2709T > A; p. Cys903*), which promotes the loss of critical domains of the protein. Cytogenetic study with DEB showed an increased chromosomal breakage. We screened heterozygous parents of the index case for cancer and we detected, in her mother, a metastatic adenocarcinoma in an axillar lymph node with probable primary site in the breast. Conclusion: It is possible to consolidate the FA-like phenotype associated with biallelic loss-of-function BRCA1, characterized by microcephaly, short stature, developmental delay, dysmorphic face features and cancer predisposition. In our case, the WES allowed to establish the genetic cause of short stature in the context of a chromosome instability syndrome. An identification of BRCA1 mutations in our patient allowed precise genetic counseling and also triggered cancer screening for the patient and her family members.
  • article 2 Citação(ões) na Scopus
    Burden of Rare Copy Number Variants in Microcephaly: A Brazilian Cohort of 185 Microcephalic Patients and Review of the Literature
    (2024) TOLEZANO, Giovanna Cantini; BASTOS, Giovanna Civitate; COSTA, Silvia Souza da; FREIRE, Bruna Lucheze; HOMMA, Thais Kataoka; HONJO, Rachel Sayuri; YAMAMOTO, Guilherme Lopes; PASSOS-BUENO, Maria Rita; KOIFFMANN, Celia Priszkulnik; KIM, Chong Ae; VIANNA-MORGANTE, Angela Maria; JORGE, Alexander Augusto de Lima; BERTOLA, Debora Romeo; ROSENBERG, Carla; KREPISCHI, Ana Cristina Victorino
    Microcephaly presents heterogeneous genetic etiology linked to several neurodevelopmental disorders (NDD). Copy number variants (CNVs) are a causal mechanism of microcephaly whose investigation is a crucial step for unraveling its molecular basis. Our purpose was to investigate the burden of rare CNVs in microcephalic individuals and to review genes and CNV syndromes associated with microcephaly. We performed chromosomal microarray analysis (CMA) in 185 Brazilian patients with microcephaly and evaluated microcephalic patients carrying < 200 kb CNVs documented in the DECIPHER database. Additionally, we reviewed known genes and CNV syndromes causally linked to microcephaly through the PubMed, OMIM, DECIPHER, and ClinGen databases. Rare clinically relevant CNVs were detected in 39 out of the 185 Brazilian patients investigated by CMA (21%). In 31 among the 60 DECIPHER patients carrying < 200 kb CNVs, at least one known microcephaly gene was observed. Overall, four gene sets implicated in microcephaly were disclosed: known microcephaly genes; genes with supporting evidence of association with microcephaly; known macrocephaly genes; and novel candidates, including OTUD7A, BBC3, CNTN6, and NAA15. In the review, we compiled 957 known microcephaly genes and 58 genomic CNV loci, comprising 13 duplications and 50 deletions, which have already been associated with clinical findings including microcephaly. We reviewed genes and CNV syndromes previously associated with microcephaly, reinforced the high CMA diagnostic yield for this condition, pinpointed novel candidate loci linked to microcephaly deserving further evaluation, and provided a useful resource for future research on the field of neurodevelopment.