EDECIO CUNHA NETO

(Fonte: Lattes)
Índice h a partir de 2011
28
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Clínica Médica, Faculdade de Medicina - Docente
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina
LIM/60 - Laboratório de Imunologia Clínica e Alergia, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 7 de 7
  • article 24 Citação(ões) na Scopus
    Selective Decrease of Components of the Creatine Kinase System and ATP Synthase Complex in Chronic Chagas Disease Cardiomyopathy
    (2011) TEIXEIRA, Priscila Camillo; SANTOS, Ronaldo Honorato Barros; FIORELLI, Alfredo Inacio; BILATE, Angelina Morand Bianchi; BENVENUTI, Luiz Alberto; STOLF, Noedir Antonio; KALIL, Jorge; CUNHA-NETO, Edecio
    Background: Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy with a worse prognosis than other cardiomyopathies. CCC occurs in 30 % of individuals infected with Trypanosoma cruzi, endemic in Latin America. Heart failure is associated with impaired energy metabolism, which may be correlated to contractile dysfunction. We thus analyzed the myocardial gene and protein expression, as well as activity, of key mitochondrial enzymes related to ATP production, in myocardial samples of end-stage CCC, idiopathic dilated (IDC) and ischemic (IC) cardiomyopathies. Methodology/Principal Findings: Myocardium homogenates from CCC (N = 5), IC (N = 5) and IDC (N = 5) patients, as well as from heart donors (N = 5) were analyzed for protein and mRNA expression of mitochondrial creatine kinase (CKMit) and muscular creatine kinase (CKM) and ATP synthase subunits aplha and beta by immunoblotting and by real-time RT-PCR. Total myocardial CK activity was also assessed. Protein levels of CKM and CK activity were reduced in all three cardiomyopathy groups. However, total CK activity, as well as ATP synthase alpha chain protein levels, were significantly lower in CCC samples than IC and IDC samples. CCC myocardium displayed selective reduction of protein levels and activity of enzymes crucial for maintaining cytoplasmic ATP levels. Conclusions/Significance: The selective impairment of the CK system may be associated to the loss of inotropic reserve observed in CCC. Reduction of ATP synthase alpha levels is consistent with a decrease in myocardial ATP generation through oxidative phosphorylation. Together, these results suggest that the energetic deficit is more intense in the myocardium of CCC patients than in the other tested dilated cardiomyopathies.
  • article 27 Citação(ões) na Scopus
    miRNAs may play a major role in the control of gene expression in key pathobiological processes in Chagas disease cardiomyopathy
    (2020) LAUGIER, Laurie; FERREIRA, Ludmila Rodrigues Pinto; FERREIRA, Frederico Moraes; CABANTOUS, Sandrine; FRADE, Amanda Farage; NUNES, Joao Paulo; RIBEIRO, Rafael Almeida; BROCHET, Pauline; TEIXEIRA, Priscila Camillo; SANTOS, Ronaldo Honorato Barros; BOCCHI, Edimar A.; BACAL, Fernando; CANDIDO, Darlan da Silva; MASO, Vanessa Escolano; NAKAYA, Helder I.; KALIL, Jorge; CUNHA-NETO, Edecio; CHEVILLARD, Christophe
    Chronic Chagas disease cardiomyopathy (CCC), an especially aggressive inflammatory dilated cardiomyopathy caused by lifelong infection with the protozoan Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Although chronic myocarditis may play a major pathogenetic role, little is known about the molecular mechanisms responsible for its severity. The aim of this study is to study the genes and microRNAs expression in tissues and their connections in regards to the pathobiological processes. To do so, we integrated for the first time global microRNA and mRNA expression profiling from myocardial tissue of CCC patients employing pathways and network analyses. We observed an enrichment in biological processes and pathways associated with the immune response and metabolism. IFN gamma, TNF and NFkB were the top upstream regulators. The intersections between differentially expressed microRNAs and differentially expressed target mRNAs showed an enrichment in biological processes such as Inflammation, inflammation, Th1/IFN-gamma-inducible genes, fibrosis, hypertrophy, and mitochondrial/oxidative stress/antioxidant response. MicroRNAs also played a role in the regulation of gene expression involved in the key cardiomyopathy-related processes fibrosis, hypertrophy, myocarditis and arrhythmia. Significantly, a discrete number of differentially expressed microRNAs targeted a high number of differentially expressed mRNAs (>20) in multiple processes. Our results suggest that miRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue. This may have a bearing on pathogenesis, biomarkers and therapy. Author summary Chronic Chagas disease cardiomyopathy (CCC), an aggressive dilated cardiomyopathy caused by Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Little is known about the molecular mechanisms responsible for its severity. Authors study the possible role of microRNAs in the regulation of gene expression in relevant pathways and pathobiological processes. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) -small RNAs that can regulate gene expression-associated to severe cardiomyopathy development. The inflammatory mediator Interferon-gamma was the most likely inducer of gene expression in CCC, and most genes belonged to the immune response, fibrosis, hypertrophy and mitochondrial metabolism. A discrete number of differentially expressed mRNAs targeted a high number of differentially expressed mRNAs in multiple processes. Moreover, several pathways had multiple targets regulated by microRNAs, suggesting synergic effect. Results suggest that microRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue.
  • article 54 Citação(ões) na Scopus
    MicroRNA Transcriptome Profiling in Heart of Trypanosoma cruzi-Infected Mice: Parasitological and Cardiological Outcomes
    (2015) NAVARRO, Isabela Cunha; FERREIRA, Frederico Moraes; NAKAYA, Helder I.; BARON, Monique Andrade; VILAR-PEREIRA, Glaucia; PEREIRA, Isabela Resende; SILVA, Ana Maria Goncalves; REAL, Juliana Monte; BRITO, Thales De; CHEVILLARD, Christophe; LANNES-VIEIRA, Joseli; KALIL, Jorge; CUNHA-NETO, Edecio; FERREIRA, Ludmila Rodrigues Pinto
    Chagas disease is caused by the parasite Trypanosoma cruzi, and it begins with a short acute phase characterized by high parasitemia followed by a life-long chronic phase with scarce parasitism. Cardiac involvement is the most prominent manifestation, as 30% of infected subjects will develop abnormal ventricular repolarization with myocarditis, fibrosis and cardiomyocyte hypertrophy by undefined mechanisms. Nevertheless, follow-up studies in chagasic patients, as well as studies with murine models, suggest that the intensity of clinical symptoms and pathophysiological events that occur during the acute phase of disease are associated with the severity of cardiac disease observed during the chronic phase. In the present study we investigated the role of microRNAs (miRNAs) in the disease progression in response to T. cruzi infection, as alterations in miRNA levels are known to be associated with many cardiovascular disorders. We screened 641 rodent miRNAs in heart samples of mice during an acute infection with the Colombiana T.cruzi strain and identified multiple miRNAs significantly altered upon infection. Seventeen miRNAs were found significantly deregulated in all three analyzed time points post infection. Among these, six miRNAs had their expression correlated with clinical parameters relevant to the disease, such as parasitemia and maximal heart rate-corrected QT (QTc) interval. Computational analyses identified that the gene targets for these six miRNAs were involved in networks and signaling pathways related to increased ventricular depolarization and repolarization times, important factors for QTc interval prolongation. The data presented here will guide further studies about the contribution of microRNAs to Chagas heart disease pathogenesis.
  • article 2 Citação(ões) na Scopus
    Anti-Trypanosoma cruzi antibody profiling in patients with Chagas disease treated with benznidazole assessed by genome phage display
    (2023) CARNERO, Luis Antonio Rodriguez; KURAMOTO, Andreia; OLIVEIRA, Lea Campos de; MONTEIRO, Jhonatas Sirino; SETUBAL, Joao Carlos; CUNHA-NETO, Edecio; SABINO, Ester Cerdeira; GIORDANO, Ricardo Jose
    BackgroundThere have been significant improvements in Chagas disease therapy and it is now widely accepted that most patients with chronic disease might benefit from therapy. However, there are challenges to monitor drug efficacy and cure for these patients, which are important impediments for current and future therapies. Trypanosoma cruzi-PCR is highly variable while IgG seroconversion takes decades yielding variable results depending on the antigen(s) used for the assay. Methods and resultsWe used the genomic phage display (gPhage) platform to perform a pairwise comparison of antigens and epitopes recognized by twenty individual patients with chronic Chagas disease before and after treatment with benznidazole. In total, we mapped 54,473 T. cruzi epitopes recognized by IgG from individual patients (N = 20) before benznidazole treatment. After treatment, the number of epitopes recognized by all patients was significantly smaller (21,254), a reduction consistent with a decrease in anti-T. cruzi antibodies. Most of these epitopes represent distinct fragments from the same protein and could, therefore, be grouped into 80 clusters of antigens. After three years of treatment with benznidazole, we observed a 64% reduction in the number of clusters of antigens recognized by patients (59 clusters before versus 21 clusters after treatment). The most abundant antigenic clusters recognized by patients correspond to the surface antigen CA-2 (B13) followed by the microtubule associated antigen, which highlights the value of these epitopes in Chagas disease diagnosis. Most importantly, quantitative pairwise comparison of gPhage data allowed for the prediction of patient response to treatment based on PCR status. Principal findingHere, we compiled a list of antigens and epitopes preferentially recognized by Chagas disease patients before and after benznidazole treatment. Next, we observed that gPhage data correlated with patient PCR-status and could, therefore, predict patient response to treatment. Moreover, gPhage results suggest that overall, independent of PCR status, treatment led to a reduction in the presence of T. cruzi-specific antibody levels and the number of antigens and epitopes recognized by these patients. ConclusionThe gPhage platform use of unbiased library of antigens, which is different from conventional serological assays that rely on predetermined antigens, is a contribution for the development of novel diagnostic tools for Chagas disease. Author summaryChagas disease, caused by the single-celled parasite Trypanosoma cruzi, can be a life-treating and debilitating illness. Because there is no vaccine and currently the only two available drugs are most effective if used during the early acute stage of the disease, treatment options for infected individuals are limited. Most individuals will only find out they have Chagas disease during a routine medical examination or in blood bank while donating blood, in which cases, they are already chronically infected. At this stage, treatment will not undo clinical mani-festations (i.e., cardiomyopathy) but may eliminate the parasite and prevent disease progression. Currently, polymerase chain reaction (PCR) and serological assays are the only diagnostic tools available, both with limi-tations in sensitivity and accuracy. The lack of effective molecular markers thus prevents physicians to deter-mine whether a patient is parasite free and cured from the disease. It also has important implications for the development of new drugs to treat Chagas disease. Here, we studied the reactivity of anti-T. cruzi antibodies in sera from a cohort of 20 patients that underwent treatment for Chagas disease using a new method developed by our group named gPhage. Using gPhage, we scanned all T. cruzi proteins to identify those that were reactive with the antibodies from each individual patient before and after treatment. In sum, gPhage data correlated with patient PCR-status and could, therefore, predict patient response to treatment. It also revealed a new set of T. cruzi proteins that could be useful for the development of future diagnostic methods.
  • article 87 Citação(ões) na Scopus
    Myocardial Chemokine Expression and Intensity of Myocarditis in Chagas Cardiomyopathy Are Controlled by Polymorphisms in CXCL9 and CXCL10
    (2012) NOGUEIRA, Luciana Gabriel; SANTOS, Ronaldo Honorato Barros; IANNI, Barbara Maria; FIORELLI, Alfredo Inacio; MAIRENA, Eliane Conti; BENVENUTI, Luiz Alberto; FRADE, Amanda; DONADI, Eduardo; DIAS, Fabricio; SABA, Bruno; WANG, Hui-Tzu Lin; FRAGATA, Abilio; SAMPAIO, Marcelo; HIRATA, Mario Hiroyuki; BUCK, Paula; MADY, Charles; BOCCHI, Edimar Alcides; STOLF, Noedir Antonio; KALIL, Jorge; CUNHA-NETO, Edecio
    Background: Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium. Methods and Results: Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2-6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes. Conclusions: Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC.
  • article 18 Citação(ões) na Scopus
    Regulation of Leishmania (L.) amazonensis Protein Expression by Host T Cell Dependent Responses: Differential Expression of Oligopeptidase B, Tryparedoxin Peroxidase and HSP70 Isoforms in Amastigotes Isolated from BALB/c and BALB/c Nude Mice
    (2015) TEIXEIRA, Priscila Camillo; VELASQUEZ, Leonardo Garcia; LEPIQUE, Ana Paula; REZENDE, Eloiza de; BONATTO, Jose Matheus Camargo; BARCINSKI, Marcello Andre; CUNHA-NETO, Edecio; STOLF, Beatriz Simonsen
    Leishmaniasis is an important disease that affects 12 million people in 88 countries, with 2 million new cases every year. Leishmania amazonensis is an important agent in Brazil, leading to clinical forms varying from localized (LCL) to diffuse cutaneous leishmaniasis (DCL). One interesting issue rarely analyzed is how host immune response affects Leishmania phenotype and virulence. Aiming to study the effect of host immune system on Leishmania proteins we compared proteomes of amastigotes isolated from BALB/c and BALB/c nude mice. The athymic nude mice may resemble patients with diffuse cutaneous leishmaniasis, considered T-cell hyposensitive or anergic to Leishmania's antigens. This work is the first to compare modifications in amastigotes' proteomes driven by host immune response. Among the 44 differentially expressed spots, there were proteins related to oxidative/nitrosative stress and proteases. Some correspond to known Leishmania virulence factors such as OPB and tryparedoxin peroxidase. Specific isoforms of these two proteins were increased in parasites from nude mice, suggesting that T cells probably restrain their posttranslational modifications in BALB/c mice. On the other hand, an isoform of HSP70 was increased in amastigotes from BALB/c mice. We believe our study may allow identification of potential virulence factors and ways of regulating their expression.
  • article 0 Citação(ões) na Scopus
    Unraveling the role of miRNAs as biomarkers in Chagas cardiomyopathy: Insights into molecular pathophysiology
    (2024) RIBEIRO, Heriks Gomes; GALDINO, Ony Araujo; SOUZA, Karla Simone Costa de; NETA, Antonia Pereira Rosa; LIN-WANG, Hui Tzu; CUNHA-NETO, Edecio; REZENDE, Adriana Augusto de; SILBIGER, Vivian Nogueira
    Background Chagas cardiomyopathy (ChCM) is a severe form of Chagas disease and a major cause of cardiovascular morbidity and mortality. The dysregulation of the immune response leads to cardiac remodeling and functional disruptions, resulting in life-threatening complications. Conventional diagnostic methods have limitations, and therapeutic response evaluation is challenging. MicroRNAs (miRNAs), important regulators of gene expression, show potential as biomarkers for diagnosis and prognosis.Aim This review aims to summarize experimental findings on miRNA expression in ChCM and explore the potential of these miRNAs as biomarkers of Chagas disease.Methods The search was conducted in the US National Library of Medicine MEDLINE/PubMed public database using the terms ""Chagas cardiomyopathy"" OR ""Chagas disease"" AND ""microRNA"" OR ""miRNA"" OR ""miR."" Additionally, bioinformatics analysis was performed to investigate miRNA-target interactions and explore enrichment pathways of gene ontology biological processes and molecular functions.Results The miR-21, miR-146b, miR-146a, and miR-155 consistently exhibited up-regulation, whereas miR-145 was down-regulated in ChCM. These specific miRNAs have been linked to fibrosis, immune response, and inflammatory processes in heart tissue. Moreover, the findings from various studies indicate that these miRNAs have the potential as biomarkers for the disease and could be targeted in therapeutic strategies for ChCM.Conclusion In this review, we point out miR-21, miR-146b, miR-146a, miR-155, and miR-145-5p role in the complex mechanisms of ChCM. These miRNAs have been shown as potential biomarkers for precise diagnosis, reliable prognostic evaluation, and effective treatment strategies in the ChCM.