KAROLLINE SANTANA DA SILVA

(Fonte: Lattes)
Índice h a partir de 2011
7
Projetos de Pesquisa
Unidades Organizacionais
LIM/10 - Laboratório de Lípides, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • conferenceObject
    LIPOPROTEINS AND LIPID METABOLISM: HDL. AEROBIC EXERCISE TRAINING DOES NOT SYSTEMATICALLY AFFECT MACROPHAGE GENE EXPRESSION INVOLVED IN REVERSE CHOLESTEROL TRANSPORT AND CHOLESTEROL EFFLUX IN CETP TRANSGENIC MICE
    (2016) PINTO, P. R.; SILVA, K. S.; GOMES, D. J.; MACHADO-LIMA, A.; IBORRA, R. T.; FERREIRA, G. S.; QUINTAO, E. C. R.; NAKANDAKARE, E. R.; MACHADO, U. F.; CORREA-GIANNELLA, M. L. C.; CATANOZI, S.; PASSARELLI, M.
  • article 15 Citação(ões) na Scopus
    N-acetylcysteine Counteracts Adipose Tissue Macrophage Infiltration and Insulin Resistance Elicited by Advanced Glycated Albumin in Healthy Rats
    (2017) SILVA, Karolline S. da; PINTO, Paula R.; FABRE, Nelly T.; GOMES, Diego J.; THIEME, Karina; OKUDA, Ligia S.; IBORRA, Rodrigo T.; FREITAS, Vanessa G.; SHIMIZU, Maria H. M.; TEODORO, Walcy R.; MARIE, Suely K. N.; WOODS, Tom; BRIMBLE, Margaret A.; PICKFORD, Russell; RYE, Kerry-Anne; OKAMOTO, Maristela; CATANOZI, Sergio; CORREA-GIANNELA, Maria L.; MACHADO, Ubiratan F.; PASSARELLI, Marisa
    Background: Advanced glycation endproducts elicit inflammation. However, their role in adipocyte macrophage infiltration and in the development of insulin resistance, especially in the absence of the deleterious biochemical pathways that coexist in diabetes mellitus, remains unknown. We investigated the effect of chronic administration of advanced glycated albumin (AGE-albumin) in healthy rats, associated or not with N-acetylcysteine (NAC) treatment, on insulin sensitivity, adipose tissue transcriptome and macrophage infiltration and polarization. Methods: Male Wistar rats were intraperitoneally injected with control (C) or AGE-albumin alone, or, together with NAC in the drinking water. Biochemical parameters, lipid peroxidation, gene expression and protein contents were, respectively, determined by enzymatic techniques, reactive thiobarbituric acid substances, RT-qPCR and immunohistochemistry or immunoblot. Carboxymethyllysine (CML) and pyrraline (PYR) were determined by LC/mass spectrometry (LC-MS/MS) and ELISA. Results: CML and PYR were higher in AGE-albumin as compared to C. Food consumption, body weight, systolic blood pressure, plasma lipids, glucose, hepatic and renal function, adipose tissue relative weight and adipocyte number were similar among groups. In AGE-treated animals, insulin resistance, adipose macrophage infiltration and Col12a1 mRNA were increased with no changes in M1 and M2 phenotypes as compared to C-albumin-treated rats. Total GLUT4 content was reduced by AGE-albumin as compared to C-albumin. NAC improved insulin sensitivity, reduced urine TBARS, adipose macrophage number and Itgam and Mrc mRNA and increased Slc2a4 and Ppara. CD11b, CD206, Ager, Ddost, Cd36, Nfkb1, Il6, Tnf, Adipoq, Retn, Arg, and Il12 expressions were similar among groups. Conclusions: AGE-albumin sensitizes adipose tissue to inflammation due to macrophage infiltration and reduces GLUT4, contributing to insulin resistance in healthy rats. NAC antagonizes AGE-albumin and prevents insulin resistance. Therefore, it may be a useful tool in the prevention of AGE action on insulin resistance and long-term complications of DM.
  • article 16 Citação(ões) na Scopus
    Glycated albumin induces lipid infiltration in mice aorta independently of DM and RAS local modulation by inducing lipid peroxidation and inflammation
    (2016) GOMES, Diego Juvenal; VELOSA, Ana Paula; OKUDA, Ligia Shimabukuro; FUSCO, Fernanda Bueno; SILVA, Karolinne Santana da; PINTO, Paula Ramos; NAKANDAKARE, Edna Regina; CORREA-GIANNELLA, Maria Lucia; WOODS, Tom; BRIMBLE, Margaret Anne; PICKFORD, Russell; RYE, Kerry-Anne; TEODORO, Walcy Rosolia; CATANOZI, Sergio; PASSARELLI, Marisa
    Aims: Advanced glycated albumin (AGE-albumin) adversely impairs macrophage lipid homeostasis in vitro, which may be prevented by angiotensin receptor blockers. In vivo studies are inconclusive whether AGE-albumin itself plays important role in early-stage atherogenesis. We aimed at investigating how AGE-albumin by itself drives atherosclerosis development in dyslipidemic non-diabetic mice and if its effects are due to the activation of renin-angiotensin system in the arterial wall and the expression of genes and proteins involved in lipid flux. Methods and results: Murine albumin glycation was induced by incubation with 10 mM glycolaldehyde and C-albumin with PBS alone. Twelve-week-old-male apoE knockout mice were submitted to a daily IP injection of control (C) or AGE-albumin (2 mg/mL) during 30 days with or without losartan (LOS: 100 mg/L; C + LOS and AGE + LOS). Aortic arch was removed, and gene expression was determined by RT-PCR and protein content by immunofluorescence. Plasma lipid and glucose levels were similar among groups. Systolic blood pressure was similarly reduced in both groups treated with LOS. In comparison to C-albumin, aortic lipid infiltration was 5.3 times increased by AGE-albumin, which was avoided by LOS. LOS prevented the enhancement induced by AGE-albumin in Ager, Tnf and Cybb mRNA levels but did not reduce Olrl. Nfkb and Agt mRNA levels were unchanged by AGE-albumin. LOS similarly reduced Agtri a mRNA level in both C and AGE-albumin groups. In AGE-albumin-treated mice, immunofluorescence for carboxymethyl-lysine, 4-hydroxynonenal and RAGE was respectively, 4.8, 2.6 and 1.7 times enhanced in comparison to C-albumin. These increases were all avoided by LOS. Conclusions: AGE-albumin evokes a pre-stage of atherogenesis in dyslipidemic mice independently of the presence of diabetes mellitus or modulation in the RAS in part by the induction of lipid peroxidation and inflammation.
  • article 23 Citação(ões) na Scopus
    Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta
    (2015) PINTO, Paula Ramos; ROCCO, Debora Dias Ferraretto Moura; OKUDA, Ligia Shimabukuro; MACHADO-LIMA, Adriana; CASTILHO, Gabriela; SILVA, Karolline Santana da; GOMES, Diego Juvenal; PINTO, Raphael de Souza; IBORRA, Rodrigo Tallada; FERREIRA, Guilherme da Silva; NAKANDAKARE, Edna Regina; MACHADO, Ubiratan Fabres; CORREA-GIANNELLA, Maria Lucia Cardillo; CATANOZI, Sergio; PASSARELLI, Marisa
    Background: Regular exercise prevents and regresses atherosclerosis by improving lipid metabolism and antioxidant defenses. Exercise ameliorates the reverse cholesterol transport (RCT), an antiatherogenic system that drives cholesterol from arterial macrophages to the liver for excretion into bile and feces. In this study we analyzed the role of aerobic exercise on the in vivo RCT and expression of genes and proteins involved in lipid flux and inflammation in peritoneal macrophages, aortic arch and liver from wild type mice. Methods: Twelve-week-old male mice were divided into sedentary and trained groups. Exercise training was performed in a treadmill (15 m/min, 30 min/day, 5 days/week). Plasma lipids were determined by enzymatic methods and lipoprotein profile by fast protein liquid chromatography. After intraperitoneal injection of J774-macrophages the RCT was assessed by measuring the recovery of H-3-cholesterol in plasma, feces and liver. The expression of liver receptors was determined by immunoblot, macrophages and aortic mRNAs by qRT-PCR. C-14-cholesterol efflux mediated by apo A-I and HDL2 and the uptake of H-3-cholesteryl oleoyl ether (H-3-COE)-acetylated-LDL were determined in macrophages isolated from sedentary and trained animals 48 h after the last exercise session. Results: Body weight, plasma lipids, lipoprotein profile, glucose and blood pressure were not modified by exercise training. A greater amount of H-3-cholesterol was recovered in plasma (24 h and 48 h) and liver (48 h) from trained animals in comparison to sedentary. No difference was found in H-3-cholesterol excreted in feces between trained and sedentary mice. The hepatic expression of scavenger receptor class B type I (SR-BI) and LDL receptor (B-E) was enhanced by exercise. We observed 2.8 and 1.7 fold rise, respectively, in LXR and Cyp7a mRNA in the liver of trained as compared to sedentary mice. Macrophage and aortic expression of genes involved in lipid efflux was not systematically changed by physical exercise. In agreement, C-14-cholestrol efflux and uptake of H-3-COE-acetylated-LDL by macrophages was similar between sedentary and trained animals. Conclusion: Aerobic exercise in vivo accelerates the traffic of cholesterol from macrophages to the liver contributing to prevention and regression of atherosclerosis, independently of changes in macrophage and aorta gene expression.