NIELS OLSEN SARAIVA CAMARA

(Fonte: Lattes)
Índice h a partir de 2011
14
Projetos de Pesquisa
Unidades Organizacionais
BMI, ICB - Docente
LIM/05 - Laboratório de Poluição Atmosférica Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 8 de 8
  • article 33 Citação(ões) na Scopus
    NF-kappa B System Is Chronically Activated and Promotes Glomerular Injury in Experimental Type 1 Diabetic Kidney Disease
    (2020) FORESTO-NETO, Orestes; ALBINO, Amanda Helen; ARIAS, Simone Costa Alarcon; FAUSTINO, Viviane Dias; ZAMBOM, Fernanda Florencia Fregnan; CENEDEZE, Marcos Antonio; ELIAS, Rosilene Motta; MALHEIROS, Denise Maria Avancini Costa; CAMARA, Niels Olsen Saraiva; FUJIHARA, Clarice Kazue; ZATZ, Roberto
    High glucose concentration can activate TLR4 and NF-kappa B, triggering the production of proinflammatory mediators. We investigated whether the NF-kappa B pathway is involved in the pathogenesis and progression of experimental diabetic kidney disease (DKD) in a model of long-term type 1 diabetes mellitus (DM). Adult male Munich-Wistar rats underwent DM by a single streptozotocin injection, and were kept moderately hyperglycemic by daily insulin injections. After 12 months, two subgroups - progressors and non-progressors - could be formed based on the degree of glomerulosclerosis. Only progressors exhibited renal TLR4, NF-kappa B and IL-6 activation. This scenario was already present in rats with short-term DM (2 months), at a time when no overt glomerulosclerosis can be detected. Chronic treatment with the NF-kappa B inhibitor, pyrrolidine dithiocarbamate (PDTC), prevented activation of renal TLR4, NF-kappa B or IL-6, without interfering with blood glucose. PDTC prevented the development of glomerular injury/inflammation and oxidative stress in DM rats. In addition, the NF-kappa B p65 component was detected in sclerotic glomeruli and inflamed interstitial areas in biopsy material from patients with type 1 DM. These observations indicate that the renal NF-kappa B pathway plays a key role in the development and progression of experimental DKD, and can become an important therapeutic target in the quest to prevent the progression of human DKD.
  • article 11 Citação(ões) na Scopus
    Simultaneous activation of innate and adaptive immunity participates in the development of renal injury in a model of heavy proteinuria
    (2018) FAUSTINO, Viviane Dias; ARIAS, Simone Costa Alarcon; AVILA, Victor Ferreira; FORESTO-NETO, Orestes; ZAMBOM, Fernanda Florencia Fregnan; MACHADO, Flavia Gomes; REIS, Luciene Machado dos; MARIA, Denise; VOLPINI, Rildo Aparecido; CAMARA, Niels Olsen Saraiva; ZATZ, Roberto; FUJIHARA, Clarice Kazue
    Protein overload of proximal tubular cells (PTCs) can promote interstitial injury by unclear mechanisms that may involve activation of innate immunity. We investigated whether prolonged exposure of tubular cells to high protein concentrations stimulates innate immunity, triggering progressive interstitial inflammation and renal injury, and whether specific inhibition of innate or adaptive immunity would provide renoprotection in an established model of massive proteinuria, adriamycin nephropathy (ADR). Adult male Munich-Wistar rats received a single dose of ADR (5 mg/kg, iv), being followed for 2, 4, or 20 weeks. Massive albuminuria was associated with early activation of both the NE-kappa B and NLRP3 innate immunity pathways, whose intensity correlated strongly with the density of lymphocyte infiltration. In addition, ADR rats exhibited clear signs of renal oxidative stress. Twenty weeks after ADR administration, marked interstitial fibrosis, glomerulosclerosis, and renal functional loss were observed. Administration of mycophenolate mofetil (MMF), 10 mg/kg/day, prevented activation of both innate and adaptive immunity, as well as renal oxidative stress and renal fibrosis. Moreover, MMF treatment was associated with shifting of M from the M1 to the M2 phenotype. In cultivated NRK52-E cells, excess albumin increased the protein content of Toll-like receptor (TLR) 4 (TLR4), NLRP3, MCP-1, IL6, IL-1 beta Caspase-1, alpha-actin, and collagen-1. Silencing of TLR4 and/or NLRP3 mRNA abrogated this proinflammatory/profibrotic behavior. Simultaneous activation of innate and adaptive immunity may be key to the development of renal injury in heavy proteinuric disease. Inhibition of specific components of innate and/or adaptive immunity may be the basis for future strategies to prevent chronic kidney disease (CKD) in this setting.
  • article 53 Citação(ões) na Scopus
    Butyrate Attenuates Lung Inflammation by Negatively Modulating Th9 Cells
    (2019) VIEIRA, Raquel de Souza; CASTOLDI, Angela; BASSO, Paulo Jose; HIYANE, Meire Ioshie; CAMARA, Niels Olsen Saraiva; ALMEIDA, Rafael Ribeiro
    Th9 cells orchestrate allergic lung inflammation by promoting recruitment and activation of eosinophils and mast cells, and by stimulating epithelial mucus production, which is known to be mainly dependent on IL-9. These cells share developmental pathways with induced regulatory T cells that may determine the generation of one over the other subset. In fact, the FOXP3 transcription factor has been shown to bind il9 locus and repress IL-9 production. The microbiota-derived short-chain fatty acids (SCFAs) butyrate and propionate have been described as FOXP3 inducers and are known to have anti-inflammatory properties. While SCFAs attenuate lung inflammation by inducing regulatory T cells and suppressing Th2 responses, their effects on Th9 cells have not been addressed yet. Therefore, we hypothesized that SCFAs would have a protective role in lung inflammation by negatively modulating differentiation and function of Th9 cells. Our results demonstrated that butyrate is more effective than propionate in promoting FOXP3 expression and IL-9 repression. In addition, propionate was found to negatively impact in vitro differentiation of IL-13-expressing T cells. Butyrate treatment attenuated lung inflammation and mucus production in OVA-challenged mice, which presented lower frequency of lung-infiltrated Th9 cells and eosinophils. Both Th9 cell adoptive transfer and IL-9 treatment restored lung inflammation in butyrate-treated OVA-challenged mice, indicating that the anti-inflammatory effects of butyrate may rely on suppressing Th9-mediated immune responses.
  • article 5 Citação(ões) na Scopus
    Nephropathy in Hypertensive Animals Is Linked to M2 Macrophages and Increased Expression of the YM1/Chi3l3 Protein
    (2019) CAVALCANTE, Paula Andrea Malveira; ALENINA, Natalia; BUDU, Alexandre; FREITAS-LIMA, Leandro Ceotto; ALVES-SILVA, Thais; AGUDELO, Juan Sebastian Henao; QADRI, Fatimunnisa; CAMARA, Niels Olsen Saraiva; BADER, Michael; ARAUJO, Ronaldo Carvalho
    Macrophages contribute to a continuous increase in blood pressure and kidney damage in hypertension, but their polarization status and the underlying mechanisms have not been clarified. This study revealed an important role for M2 macrophages and the YM1/Chi3l3 protein in hypertensive nephropathy in a mouse model of hypertension. Bone marrow cells were isolated from the femurs and tibia of male FVB/N (control) and transgenic hypertensive animals that overexpressed the rat form of angiotensinogen (TGM(rAOGEN)123, TGM123-FVB/N). The cells were treated with murine M-CSF and subsequently with LPS+IFN-gamma to promote their polarization into M1 macrophages and IL-4+IL-13 to trigger the M2 phenotype. We examined the kidneys of TGM123-FVB/N animals to assess macrophage polarization and end-organ damage. mRNA expression was evaluated using real-time PCR, and protein levels were assessed through ELISA, CBA, Western blot, and immunofluorescence. Histology confirmed high levels of renal collagen. Cells stimulated with LPS+IFN-gamma in vitro showed no significant difference in the expression of CD86, an M1 marker, compared to cells from the controls or the hypertensive mice. When stimulated with IL-4+IL-13, however, macrophages of the hypertensive group showed a significant increase in CD206 expression, an M2 marker. The M2/M1 ratio reached 288%. Our results indicate that when stimulated in vitro, macrophages from hypertensive mice are predisposed toward polarization to an M2 phenotype. These data support results from the kidneys where we found an increased infiltration of macrophages predominantly polarized to M2 associated with high levels of YM1/Chi3l3 (91,89%), suggesting that YM1/Chi3l3 may be a biomarker of hypertensive nephropathy.
  • article 17 Citação(ões) na Scopus
    Sensing soluble uric acid by Naip1-Nlrp3 platform
    (2021) BRAGA, Tarcio Teodoro; DAVANSO, Mariana Rodrigues; MENDES, Davi; SOUZA, Tiago Antonio de; BRITO, Anderson Fernandes de; CRUZ, Mario Costa; HIYANE, Meire Ioshie; LIMA, Dhemerson Souza de; NUNES, Vinicius; GIAROLA, Juliana de Fatima; SOUTO, Denio Emanuel Pires; PROCHNICKI, Tomasz; LAUTERBACH, Mario; BISCAIA, Stellee Marcela Petris; FREITAS, Rilton Alves de; CURI, Rui; PONTILLO, Alessandra; LATZ, Eicke; CAMARA, Niels Olsen Saraiva
    Uric acid (UA), a product of purine nucleotide degradation able to initiate an immune response, represents a breakpoint in the evolutionary history of humans, when uricase, the enzyme required for UA cleavage, was lost. Despite being inert in human cells, UA in its soluble form (sUA) can increase the level of interleukin-1 beta (IL-1 beta) in murine macrophages. We, therefore, hypothesized that the recognition of sUA is achieved by the Naip1-Nlrp3 inflammasome platform. Through structural modelling predictions and transcriptome and functional analyses, we found that murine Naip1 expression in human macrophages induces IL-1 beta expression, fatty acid production and an inflammation-related response upon sUA stimulation, a process reversed by the pharmacological and genetic inhibition of Nlrp3. Moreover, molecular interaction experiments showed that Naip1 directly recognizes sUA. Accordingly, Naip may be the sUA receptor lost through the human evolutionary process, and a better understanding of its recognition may lead to novel anti-hyperuricaemia therapies.
  • article 201 Citação(ões) na Scopus
    Inflammation in Renal Diseases: New and Old Players
    (2019) ANDRADE-OLIVEIRA, Vinicius; FORESTO-NETO, Orestes; WATANABE, Ingrid Kazue Mizuno; ZATZ, Roberto; CAMARA, Niels Olsen Saraiva
    Inflammation, a process intimately linked to renal disease, can be defined as a complex network of interactions between renal parenchymal cells and resident immune cells, such as macrophages and dendritic cells, coupled with recruitment of circulating monocytes, lymphocytes, and neutrophils. Once stimulated, these cells activate specialized structures such as Toll-like receptor and Nod-like receptor (NLR). By detecting danger-associated molecules, these receptors can set in motion major innate immunity pathways such as nuclear factor kappa B (NF-kappa B) and NLRP3 inflammasome, causing metabolic reprogramming and phenotype changes of immune and parenchymal cells and triggering the secretion of a number of inflammatory mediators that can cause irreversible tissue damage and functional loss. Growing evidence suggests that this response can be deeply impacted by the crosstalk between the kidneys and other organs, such as the gut. Changes in the composition and/or metabolite production of the gut microbiota can influence inflammation, oxidative stress, and fibrosis, thus offering opportunities to positively manipulate the composition and/or functionality of gut microbiota and, consequentially, ameliorate deleterious consequences of renal diseases. In this review, we summarize the most recent evidence that renal inflammation can be ameliorated by interfering with the gut microbiota through the administration of probiotics, prebiotics, and postbiotics. In addition to these innovative approaches, we address the recent discovery of new targets for drugs long in use in clinical practice. Angiotensin II receptor antagonists, NF-kappa B inhibitors, thiazide diuretics, and antimetabolic drugs can reduce renal macrophage infiltration and slow down the progression of renal disease by mechanisms independent of those usually attributed to these compounds. Allopurinol, an inhibitor of uric acid production, has been shown to decrease renal inflammation by limiting activation of the NLRP3 inflammasome. So far, these protective effects have been shown in experimental studies only. Clinical studies will establish whether these novel strategies can be incorporated into the arsenal of treatments intended to prevent the progression of human disease.
  • article 14 Citação(ões) na Scopus
    Chronic exposure to diesel particles worsened emphysema and increased M2-like phenotype macrophages in a PPE-induced model
    (2020) MOREIRA, Alyne Riani; CASTRO, Thamyres Barros Pereira de; KOHLER, Julia Benini; ITO, Juliana Tiyaki; SILVA, Larissa Emidio de Franca; LOURENCO, Juliana Dias; ALMEIDA, Rafael Ribeiro; SANTANA, Fernanda Roncon; BRITO, Jose Mara; RIVERO, Dolores Helena Rodriguez Ferreira; VALE, Maria Isabel Cardoso Alonso; PRADO, Carla Maximo; CAMARA, Niels Olsen Saraiva; SALDIVA, Paulo Hilario Nascimento; OLIVO, Clarice Rosa; LOPES, Fernanda Degobbi Tenorio Quirino dos Santos
    Chronic exposure to ambient levels of air pollution induces respiratory illness exacerbation by increasing inflammatory responses and apoptotic cells in pulmonary tissues. The ineffective phagocytosis of these apoptotic cells (efferocytosis) by macrophages has been considered an important factor in these pathological mechanisms. Depending on microenvironmental stimuli, macrophages can assume different phenotypes with different functional actions. M1 macrophages are recognized by their proinflammatory activity, whereas M2 macrophages play pivotal roles in responding to microorganisms and in efferocytosis to avoid the progression of inflammatory conditions. To verify how exposure to air pollutants interferes with macrophage polarization in emphysema development, we evaluated the different macrophage phenotypes in a PPE-induced model with the exposure to diesel exhaust particles. C57BL/6 mice received intranasal instillation of porcine pancreatic elastase (PPE) to induce emphysema, and the control groups received saline. Both groups were exposed to diesel exhaust particles or filtered air for 60 days according to the groups. We observed that both the diesel and PPE groups had an increase in alveolar enlargement, collagen and elastic fibers in the parenchyma and the number of macrophages, lymphocytes and epithelial cells in BAL, and these responses were exacerbated in animals that received PPE instillation prior to exposure to diesel exhaust particles. The same response pattern was found inCaspase-3 positive cell analysis, attesting to an increase in cell apoptosis, which is in agreement with the increase in M2 phenotype markers, measured by RT-PCR and flow cytometry analysis. We did not verify differences among the groups for the M1 phenotype. In conclusion, our results showed that both chronic exposure to diesel exhaust particles and PPE instillation induced inflammatory conditions, cell apoptosis and emphysema development, as well as an increase in M2 phenotype macrophages, and the combination of these two factors exacerbated these responses. The predominance of the M2-like phenotype likely occurred due to the increased demand for efferocytosis. However, M2 macrophage activity was ineffective, resulting in emphysema development and worsening of symptoms.
  • article 5 Citação(ões) na Scopus
    Renal Inflammation and Innate Immune Activation Underlie the Transition From Gentamicin-Induced Acute Kidney Injury to Renal Fibrosis
    (2021) ALBINO, Amanda Helen; ZAMBOM, Fernanda Florencia Fregnan; FORESTO-NETO, Orestes; OLIVEIRA, Karin Carneiro; AVILA, Victor Ferreira; ARIAS, Simone Costa Alarcon; SEGURO, Antonio Carlos; MALHEIROS, Denise Maria Avancini Costa; CAMARA, Niels Olsen Saraiva; FUJIHARA, Clarice Kazue; ZATZ, Roberto
    Subjects recovering from acute kidney injury (AKI) are at risk of developing chronic kidney disease (CKD). The mechanisms underlying this transition are unclear and may involve sustained activation of renal innate immunity, with resulting renal inflammation and fibrosis. We investigated whether the NF-kappa B system and/or the NLRP3 inflammasome pathway remain activated after the resolution of AKI induced by gentamicin (GT) treatment, thus favoring the development of CKD. Male Munich-Wistar rats received daily subcutaneous injections of GT, 80 mg/kg, for 9 days. Control rats received vehicle only (NC). Rats were studied at 1, 30, and 180 days after GT treatment was ceased. On Day 1, glomerular ischemia (ISCH), tubular necrosis, albuminuria, creatinine retention, and tubular dysfunction were noted, in association with prominent renal infiltration by macrophages and myofibroblasts, along with increased renal abundance of TLR4, IL-6, and IL1 beta. Regression of functional and structural changes occurred on Day 30. However, the renal content of IL-1 beta was still elevated at this time, while the local renin-angiotensin system remained activated, and interstitial fibrosis became evident. On Day 180, recurring albuminuria and mild glomerulosclerosis were seen, along with ISCH and unabated interstitial fibrosis, whereas macrophage infiltration was still evident. GT-induced AKI activates innate immunity and promotes renal inflammation. Persistence of these abnormalities provides a plausible explanation for the transition of AKI to CKD observed in a growing number of patients.