ELAINE MARIA FRADE COSTA

(Fonte: Lattes)
Índice h a partir de 2011
23
Projetos de Pesquisa
Unidades Organizacionais
Instituto Central, Hospital das Clínicas, Faculdade de Medicina
LIM/42 - Laboratório de Hormônios e Genética Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 41
  • conferenceObject
    Inherited Digenic Missense Variants in FGFR2 and MAP3K1 Genes in Two Siblings with 46,XY Partial Gonadal Dysgenesis
    (2014) MACHADO, Aline Zamboni; NISHI, Mirian Yumie; COSTA, Elaine Maria Frade; MENDONCA, Berenice B.; DOMENICE, Sorahia
  • article 75 Citação(ões) na Scopus
    46,XY disorder of sex development (DSD) due to 17 beta-hydroxysteroid dehydrogenase type 3 deficiency
    (2017) MENDONCA, Berenice B.; GOMES, Nathalia Lisboa; COSTA, Elaine M. F.; INACIO, Marlene; MARTIN, Regina M.; NISHI, Mirian Y.; CARVALHO, Filomena Marino; TIBOR, Francisco Denes; DOMENICE, Sorahia
    17 beta-hydroxysteroid dehydrogenase 3 deficiency consists of a defect in the last phase of steroidogenesis, in which androstenedione is converted into testosterone and estrone into estradiol. External genitalia range from female-like to atypical genitalia and most affected males are raised as females. Virilization in subjects with 17 beta-HSD3 deficiency occurs at the time of puberty and several of them change to male social sex. In male social sex patients, testes can be safely maintained, as long as they are positioned inside the scrotum The phenotype of 46,XY DSD due to 17 beta-HSD3 deficiency is extremely variable and clinically indistinguishable from other causes of 46,XY DSD such as partial androgen insensitivity syndrome and 5 alpha-reductase 2 deficiency. Laboratory diagnosis is based on a low testosterone/androstenedione ratio due to high serum levels of androstenedione and low levels of testosterone. The disorder is caused by a homozygous or compound heterozygous mutations in the HSD17B3 gene that encodes the 17 beta-HSD3 isoenzyme leading to an impairment of the conversion of 17-keto into 17-hydroxysteroids. Molecular genetic testing confirms the diagnosis and provides the orientation for genetic counseling. Our proposal in this article is to review-the previously reported cases of 17 beta-HSD3 deficiency adding our own cases. (C) 2016 Published by Elsevier Ltd.
  • article 14 Citação(ões) na Scopus
    Partial androgen insensitivity syndrome due to somatic mosaicism of the androgen receptor
    (2018) BATISTA, Rafael Loch; RODRIGUES, Andresa De Santi; MACHADO, Aline Zamboni; NISHI, Mirian Yumie; CUNHA, Flavia Siqueira; SILVA, Rosana Barbosa; COSTA, Elaine M. F.; MENDONCA, Berenice B.; DOMENICE, Sorahia
    Background: Androgen insensitivity syndrome (AIS) is the most frequent etiology of 46, XY disorders of sex development (DSDs), and it is an X-linked disorder caused by mutations in the androgen receptor (AR) gene. AIS patients present a broad phenotypic spectrum and individuals with a partial phenotype present with different degrees of undervirilized external genitalia. There are more than 500 different AR gene allelic variants reported to be linked to AIS, but the presence of somatic mosaicisms has been rarely identified. In the presence of a wild-type AR gene, a significant degree of spontaneous virilization at puberty can be observed, and it could influence the gender assignment, genetic counseling and the clinical and psychological management of these patients and the psychosexual outcomes of these patients are not known. Case presentation: In this study, we report two patients with AR allelic variants in heterozygous (c.382G>T and c.1769-1G>C) causing a partial AIS (PAIS) phenotype. The first patient was raised as female and she had undergone a gonadectomy at puberty. In both patients there was congruency between gender of rearing and gender identity and gender role. Conclusions: Somatic mosaicism is rare in AIS and nonsense AR variant allelic can cause partial AIS phenotype in this situation. Despite the risk of virilization and prenatal androgen exposure, the gender identity and gender role was concordant with sex of rearing in both cases. A better testosterone response can be expected in male individuals and this should be considered in the clinical management.
  • article 34 Citação(ões) na Scopus
    Homozygous Inactivating Mutation in NANOS3 in Two Sisters with Primary Ovarian Insufficiency
    (2014) SANTOS, Mariza G.; MACHADO, Aline Z.; MARTINS, Conceicao N.; DOMENICE, Sorahia; COSTA, Elaine M. F.; NISHI, Mirian Y.; FERRAZ-DE-SOUZA, Bruno; JORGE, Soraia A. C.; PEREIRA, Carlos A.; SOARDI, Fernanda C.; MELLO, Maricilda P. de; MACIEL-GUERRA, Andrea T.; GUERRA-JUNIOR, Gil; MENDONCA, Berenice B.
    Despite the increasing understanding of female reproduction, the molecular diagnosis of primary ovarian insufficiency (POI) is seldom obtained. The RNA-binding protein NANOS3 poses as an interesting candidate gene for POI since members of the Nanos family have an evolutionarily conserved function in germ cell development and maintenance by repressing apoptosis. We performed mutational analysis of NANOS3 in a cohort of 85 Brazilian women with familial or isolated POI, presenting with primary or secondary amenorrhea, and in ethnically-matched control women. A homozygous p.Glu120Lysmutation in NANOS3 was identified in two sisters with primary amenorrhea. The substituted amino acid is located within the second C2HC motif in the conserved zinc finger domain of NANOS3 and in silico molecular modelling suggests destabilization of protein-RNA interaction. In vitro analyses of apoptosis through flow cytometry and confocal microscopy show that NANOS3 capacity to prevent apoptosis was impaired by this mutation. The identification of an inactivating missense mutation in NANOS3 suggests a mechanism for POI involving increased primordial germ cells (PGCs) apoptosis during embryonic cell migration and highlights the importance of NANOS proteins in human ovarian biology.
  • article 10 Citação(ões) na Scopus
    Heterozygous Nonsense Mutation in the Androgen Receptor Gene Associated with Partial Androgen Insensitivity Syndrome in an Individual with 47, XXY Karyotype
    (2017) BATISTA, Rafael L.; RODRIGUES, Andresa S.; NISHI, Mirian Y.; FEITOSA, Alina C. R.; GOMES, Nathalia L. R. A.; JUNIOR, Jose Antonio F.; DOMENICE, Sorahia; COSTA, Elaine M. F.; MENDONCA, Berenice B. de
    There are only 2 patients with 47, XXY karyotype and androgen receptor (AR) gene mutation reported in the literature, and both are diagnosed as complete androgen insensitivity syndrome (CAIS). We report a 22-year-old female with 47, XXY karyotype and atypical external genitalia. Sequencing of AR revealed the heterozygous p.Asn849Lys*32 mutation, and extensive X chromosome microsatellite analysis showed homozygosity for Xp and heterozygosity for Xq, suggesting partial X maternal isodisomy. Partial androgen insensitivity syndrome (PAIS) developed in this case, probably because of the presence of the heterozygous AR mutation and random X-inactivation of the healthy allele. This is the first report of a female patient with 47, XXY karyotype and PAIS phenotype. (C) 2017 S.Karger AG, Basel
  • article 83 Citação(ões) na Scopus
    Wide spectrum of NR5A1-related phenotypes in 46,XY and 46,XX individuals
    (2016) DOMENICE, Sorahia; MACHADO, Aline Zamboni; FERREIRA, Frederico Moraes; FERRAZ-DE-SOUZA, Bruno; LERARIO, Antonio Marcondes; LIN, Lin; NISHI, Mirian Yumie; GOMES, Nathalia Lisboa; SILVA, Thatiana Evelin da; SILVA, Rosana Barbosa; CORREA, Rafaela Vieira; MONTENEGRO, Luciana Ribeiro; NARCISO, Amanda; COSTA, Elaine Maria Frade; ACHERMANN, John C.; MENDONCA, Berenice Bilharinho
    Steroidogenic factor 1 (NR5A1, SF-1, Ad4BP) is a transcriptional regulator of genes involved in adrenal and gonadal development and function. Mutations in NR5A1 have been among the most frequently identified genetic causes of gonadal development disorders and are associated with a wide phenotypic spectrum. In 46,XY individuals, NR5A1-related phenotypes may range from disorders of sex development (DSD) to oligo/azoospermia, and in 46,XX individuals, from 46,XX ovotesticular and testicular DSD to primary ovarian insufficiency (POI). The most common 46,XY phenotype is atypical or female external genitalia with clitoromegaly, palpable gonads, and absence of Mullerian derivatives. Notably, an undervirilized external genitalia is frequently seen at birth, while spontaneous virilization may occur later, at puberty. In 46,XX individuals, NR5A1 mutations are a rare genetic cause of POI, manifesting as primary or secondary amenorrhea, infertility, hypoestrogenism, and elevated gonadotropin levels. Mothers and sisters of 46,XY DSD patients carrying heterozygous NR5A1 mutations may develop POI, and therefore require appropriate counseling. Moreover, the recurrent heterozygous p.Arg92Trp NR5A1 mutation is associated with variable degrees of testis development in 46,XX patients. A clear genotype-phenotype correlation is not seen in patients bearing NR5A1 mutations, suggesting that genetic modifiers, such as pathogenic variants in other testis/ovarian-determining genes, may contribute to the phenotypic expression. Here, we review the published literature on NR5A1-related disease, and discuss our findings at a single tertiary center in Brazil, including ten novel NR5A1 mutations identified in 46,XY DSD patients. The ever-expanding phenotypic range associated with NR5A1 variants in XY and XX individuals confirms its pivotal role in reproductive biology, and should alert clinicians to the possibility of NR5A1 defects in a variety of phenotypes presenting with gonadal dysfunction. Birth Defects Research (Part C) 108:309-320, 2016. (c) 2016 The Authors Birth Defects Research Part C: Embryo Today: Reviews Published by Wiley Periodicals, Inc.
  • conferenceObject
    DEAH-Box Helicase 37defects (DXH37) Defects Are a Novel Cause of 46,XY Gonadal Dysgenesis
    (2018) GOMES, Nathalia; SILVA, Thatiana; LERARIO, Antonio; BATISTA, Rafael Loch; FARIA JUNIOR, Jose Antonio; MORAES, Daniela; COSTA, Elaine Maria Frade; NISHI, Mirian; CARVALHO, Luciani Renata; FORCLAZ, Maria Veronica; PAPAZIAN, Regina; MARTINEZ-AGUAYO, Alejandro; PAULA, Leila Pedroso de; CARVALHO, Filomena Marino; VILAIN, Erick; BARSEGHYAN, Hayk Barseghyan; KEEGAN, Catherine; DOMENICE, Sorahia; MENDONCA, Berenice Bilharinho
  • conferenceObject
    Low Frequency of Pathogenic Allelic Variants in the 46,XY Differences of Sex Development (DSD)-Related Genes in Small for Gestational Age Children with Hypospadias
    (2019) BRAGA, B. L.; GOMES, L. N.; NISHI, M. Y.; FREIRE, B. L.; BATISTA, R. L.; FUNARI, M. F. A.; COSTA, E. M. F.; LERARIO, A. M.; DOMENICE, S.; JUNIOR, J. A. D. F.; JORGE, A. A. L.; MENDONCA, B. B.
  • article 2 Citação(ões) na Scopus
    Variants in 46,XY DSD-Related Genes in Syndromic and Non-Syndromic Small for Gestational Age Children with Hypospadias
    (2022) BRAGA, B. L.; GOMES, N. L.; NISHI, M. Y.; FREIRE, B. L.; BATISTA, R. L.; FARIA JUNIOR, J. A. D.; FUNARI, M. F. A.; BENEDETTI, A. F. F.; NARCIZO, A. De Moraes; CARDOSO, L. Cavalca; LERARIO, A. M.; GUERRA-JUNIOR, G.; COSTA, E. M. F.; DOMENICE, S.; JORGE, A. A. L.; MENDONCA, B. B.
    Hypospadias is a common congenital disorder of male genital formation. Children born small for gestational age (SGA) present a high frequency of hypospadias of undetermined etiology. No previous study investigated the molecular etiology of hypospadias in boys born SGA using massively parallel sequencing. Our objective is to report the genetic findings of a cohort of patients born SGA with medium or proximal hypospadias. We identified 46 individuals with this phenotype from a large cohort of 46,XY DSD patients, including 5 individuals with syndromic features. DNA samples from subjects were studied by either whole exome sequencing or target gene panel approach. Three of the syndromic patients have 5 main clinical features of Silver-Russell syndrome (SRS) and were first studied by MLPA. Among the syndromic patients, loss of DNA methylation at the imprinting control region H19/IGF2 was identified in 2 individuals with SRS clinical diagnosis. Two novel pathogenic variants in compound heterozygous state were identified in the CUL7 gene establishing the diagnosis of 3M syndrome in one patient, and a novel homozygous variant in TRIM37 was identified in another boy with Mulibrey nanism phenotype. Among the non-syndromic subjects, 7 rare heterozygous variants were identified in 6 DSD-related genes. However, none of the variants found can explain the phenotype by themselves. In conclusion, a genetic defect that clarifies the etiology of hypospadias was not found in most of the non-syndromic SGA children, supporting the hypothesis that multifactorial causes, new genes, and/or unidentified epigenetic defects may have an influence in this condition.
  • conferenceObject
    Final adult height in SRY-negative 46, XX ovotesticular differences of sex development individuals
    (2019) FERRARI, Maria Tereza Martins; RODRIGUES, Daniela Moraes; GOMES, Nathalia Lisboa; NISHI, Mirian Yumi; BATISTA, Rafael Loch; COSTA, Elaine Maria Frade; MENDONCA, Berenice Bilharinho; DOMENICE, Sorahia; CRUZ, Patricia Sales Marques; SIRCILI, Maria Helena