SERGIO RODRIGUES DE MORAES

(Fonte: Lattes)
Índice h a partir de 2011
3
Projetos de Pesquisa
Unidades Organizacionais
Instituto Central, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 33 Citação(ões) na Scopus
    Molecular and Biomechanical Clues From Cardiac Tissue Decellularized Extracellular Matrix Drive Stromal Cell Plasticity
    (2020) LIGUORI, Gabriel Romero; LIGUORI, Tacia Tavares Aquinas; MORAES, Sergio Rodrigues de; SINKUNAS, Viktor; TERLIZZI, Vincenzo; DONGEN, Joris A. van; SHARMA, Prashant K.; MOREIRA, Luiz Felipe Pinho; HARMSEN, Martin Conrad
    Decellularized-organ-derived extracellular matrix (dECM) has been used for many years in tissue engineering and regenerative medicine. The manufacturing of hydrogels from dECM allows to make use of the pro-regenerative properties of the ECM and, simultaneously, to shape the material in any necessary way. The objective of the present project was to investigate differences between cardiovascular tissues (left ventricle, mitral valve, and aorta) with respect to generating dECM hydrogels and their interaction with cells in 2D and 3D. The left ventricle, mitral valve, and aorta of porcine hearts were decellularized using a series of detergent treatments (SDS, Triton-X 100 and deoxycholate). Mass spectrometry-based proteomics yielded the ECM proteins composition of the dECM. The dECM was digested with pepsin and resuspended in PBS (pH 7.4). Upon warming to 37 degrees C, the suspension turns into a gel. Hydrogel stiffness was determined for samples with a dECM concentration of 20 mg/mL. Adipose tissue-derived stromal cells (ASC) and a combination of ASC with human pulmonary microvascular endothelial cells (HPMVEC) were cultured, respectively, on and in hydrogels to analyze cellular plasticity in 2D and vascular network formation in 3D. Differentiation of ASC was induced with 10 ng/mL of TGF-beta 1 and SM22 alpha used as differentiation marker. 3D vascular network formation was evaluated with confocal microscopy after immunofluorescent staining of PECAM-1. In dECM, the most abundant protein was collagen VI for the left ventricle and mitral valve and elastin for the aorta. The stiffness of the hydrogel derived from the aorta (6,998 +/- 895 Pa) was significantly higher than those derived from the left ventricle (3,384 +/- 698 Pa) and the mitral valve (3,233 +/- 323 Pa) (One-way ANOVA,p= 0.0008). Aorta-derived dECM hydrogel drove non-induced (without TGF-beta 1) differentiation, while hydrogels derived from the left ventricle and mitral valve inhibited TGF-beta 1-induced differentiation. All hydrogels supported vascular network formation within 7 days of culture, but ventricular dECM hydrogel demonstrated more robust vascular networks, with thicker and longer vascular structures. All the three main cardiovascular tissues, myocardium, valves, and large arteries, could be used to fabricate hydrogels from dECM, and these showed an origin-dependent influence on ASC differentiation and vascular network formation.
  • article 9 Citação(ões) na Scopus
    Acute administration of oestradiol or progesterone in a spinal cord ischaemia-reperfusion model in rats
    (2018) CAVALCANTE, Leonardo Pessoa; FERREIRA, Sueli Gomes; PEREIRA, Daniel Romano; MORAES, Sergio Rodrigues de; SIMAS, Rafael; SANNOMIYA, Paulina; BREITHAUPT-FALOPPA, Ana Cristina; MOREIRA, Luiz Felipe Pinho
    OBJECTIVES: Despite research into protective pharmacological adjuncts, paraplegia persists as a dreaded complication after thoracic and thoracoabdominal aortic interventions. Reports on gender-related neurological outcomes after ischaemic and traumatic brain injuries have led to increased interest in hormonal neuroprotective effects and have generated other studies seeking to prove the neuroprotective effects of the therapeutic administration of 17 beta-oestradiol and of progesterone. We hypothesised that acute administration of oestradiol or progesterone would prevent or attenuate spinal cord ischaemic injury induced by occlusion of the descending thoracic aorta. METHODS: Male rats were divided into groups receiving 280 A mu g/kg of 17 beta-oestradiol or 4 mg/kg of progesterone or vehicle 30 min before transitory endovascular occlusion of the proximal descending thoracic aorta for 12 min. Hindlimb motor function was assessed by a functional grading scale (that of Basso, Beattie and Bresnahan) for 14 days after reperfusion. On the 14th day, a segment of the thoracolumbar spinal cord was harvested and prepared for histological and immunohistochemical analyses. RESULTS: There was significant impairment of the motor function of the hindlimb in the 3 study groups, with partial improvement noticed over time, but no difference was detected between the groups. On Day 1 of assessment, the 17 beta-oestradiol group had a functional score of 9.8 (0.0-16.5); the progesterone group, a score of 0.0 (0-17.1) and the control group, a score of 6.5 (0-16.9); on the 14th day, the 17 beta-oestradiol group had a functional score of 18.0 (4.4-19.4); the progesterone group had a score of 7.5 (0-18.5) and the control group had a score of 17.0 (0-19.9). Analysis of the grey matter showed that the number of viable neurons per section was not different between the study groups on the 14th day. Immunostaining of the spinal cord grey matter was also similar among the 3 groups. CONCLUSIONS: Acute administration of oestradiol or of progesterone 30 min before transitory occlusion of the proximal descending thoracic aorta of male rats could not prevent or attenuate spinal cord ischaemic injury based on an analysis of functional and histological outcomes.