LUDMILA RODRIGUES PINTO FERREIRA CAMARGO

(Fonte: Lattes)
Índice h a partir de 2011
13
Projetos de Pesquisa
Unidades Organizacionais
LIM/19 - Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 20
  • conferenceObject
    Evaluation of the Profile of Circulating microRNAs in Individuals with Recent Type 1 Diabetes and Healthy Controls
    (2017) SANTOS, Aritania S.; FERREIRA, Ludmila R.; FUKUI, Rosa T.; CUNHA-NETO, Edecio; SILVA, Maria Elizabeth R.
  • article 16 Citação(ões) na Scopus
    The Combined Deficiency of Immunoproteasome Subunits Affects Both the Magnitude and Quality of Pathogen- and Genetic Vaccination-Induced CD8(+) T Cell Responses to the Human Protozoan Parasite Trypanosoma cruzi
    (2016) ERSCHING, Jonatan; VASCONCELOS, Jose R.; FERREIRA, Camila P.; CAETANO, Braulia C.; MACHADO, Alexandre V.; BRUNA-ROMERO, Oscar; BARON, Monique A.; FERREIRA, Ludmila R. P.; CUNHA-NETO, Edecio; ROCK, Kenneth L.; GAZZINELLI, Ricardo T.; RODRIGUES, Maurcio M.
    The beta 1i, beta 2i and beta 5i immunoproteasome subunits have an important role in defining the repertoire of MHC class I-restricted epitopes. However, the impact of combined deficiency of the three immunoproteasome subunits in the development of protective immunity to intracellular pathogens has not been investigated. Here, we demonstrate that immunoproteasomes play a key role in host resistance and genetic vaccination-induced protection against the human pathogen Trypanosoma cruzi (the causative agent of Chagas disease), immunity to which is dependent on CD8(+) T cells and IFN-gamma (the classical immunoproteasome inducer). We observed that infection with T. cruzi triggers the transcription of immunoproteasome genes, both in mice and humans. Importantly, genetically vaccinated or T. cruziinfected beta 1i, beta 2i and beta 5i triple knockout (TKO) mice presented significantly lower frequencies and numbers of splenic CD8(+) effector T cells (CD8(+) CD44(high)CD62L(low)) specific for the previously characterized immunodominant (VNHRFTLV) H-2K(b)-restricted T. cruzi epitope. Not only the quantity, but also the quality of parasite-specific CD8(+) T cell responses was altered in TKO mice. Hence, the frequency of double-positive (IFN-gamma(+)/TNF+) or single-positive (IFN-gamma(+)) cells specific for the H-2K(b)-restricted immunodominant as well as subdominant T. cruzi epitopes were higher inWT mice, whereas TNF single-positive cells prevailed among CD8(+) T cells from TKO mice. Contrasting with their WT counterparts, TKO animals were also lethally susceptible to T. cruzi challenge, even after an otherwise protective vaccination with DNA and adenoviral vectors. We conclude that the immunoproteasome subunits are key determinants in host resistance to T. cruzi infection by influencing both the magnitude and quality of CD8(+) T cell responses.
  • conferenceObject
    Circulating miR-1 And miR-133b Correlate With Subclinical Myocardial Injury In Breast Cancer Patients Under Doxorubicin Treatment
    (2015) OLIVEIRA-CARVALHO, Vagner; FERREIRA, Ludmila R.; BORGES, Danielle P.; AYUB-FERREIRA, Silvia M.; AVILA, Monica S.; BRANDAO, Sara M.; CRUZ, Fatima; CUNHA-NETO, Edecio; BOCCHI, Edimar A.
  • conferenceObject
    CIRCULATING MIRNAS PROFILE AS POTENTIAL SIGNATURE OF BENZNIDAZOLE TREATMENT TOXICITY IN CHAGAS PATIENTS
    (2017) CANDIDO, Darlan da Silva; CUNHA-NETO, Edecio; RIGAUD, Vagner O.; OLIVEIRA, Lea C. de; MOREIRA, Carlos Henrique V.; JUNIOR, Nelson G.; SOUZA, Marcela de; SABINO, Ester C.; FERREIRA, Ludmila R.
  • article 41 Citação(ões) na Scopus
    Genetic susceptibility to Chagas disease cardiomyopathy: involvement of several genes of the innate immunity and chemokine-dependent migration pathways
    (2013) FRADE, Amanda Farage; PISSETTI, Cristina Wide; IANNI, Barbara Maria; SABA, Bruno; LIN-WANG, Hui Tzu; NOGUEIRA, Luciana Gabriel; BORGES, Ariana de Melo; BUCK, Paula; DIAS, Fabricio; BARON, Monique; FERREIRA, Ludmila Rodrigues Pinto; SCHMIDT, Andre; MARIN-NETO, Jose Antonio; HIRATA, Mario; SAMPAIO, Marcelo; FRAGATA, Abilio; PEREIRA, Alexandre Costa; DONADI, Eduardo; KALIL, Jorge; RODRIGUES, Virmondes; CUNHA-NETO, Edecio; CHEVILLARD, Christophe
    Background: Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is, by far, the most important clinical consequence of T. cruzi infection. The others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Migration of Th1-type T cells play a major role in myocardial damage. Methods: Our genetic analysis focused on CCR5, CCL2 and MAL/TIRAP genes. We used the Tag SNPs based approach, defined to catch all the genetic information from each gene. The study was conducted on a large Brazilian population including 315 CCC cases and 118 ASY subjects. Results: The CCL2rs2530797A/A and TIRAPrs8177376A/A were associated to an increase susceptibility whereas the CCR5rs3176763C/C genotype is associated to protection to CCC. These associations were confirmed when we restricted the analysis to severe CCC, characterized by a left ventricular ejection fraction under 40%. Conclusions: Our data show that polymorphisms affecting key molecules involved in several immune parameters (innate immunity signal transduction and T cell/monocyte migration) play a role in genetic susceptibility to CCC development. This also points out to the multigenic character of CCC, each polymorphism imparting a small contribution. The identification of genetic markers for CCC will provide information for pathogenesis as well as therapeutic targets.
  • article 10 Citação(ões) na Scopus
    Differential microRNA Profile in Operational Tolerance: A Potential Role in Favoring Cell Survival
    (2019) CABRAL, Amanda; CANDIDO, Daran da Silva; MONTEIRO, Sandra Maria; LEMOS, Francine; SAITOVITCH, David; NORONHA, Irene L.; ALVES, Leticia Ferreira; GERAIDO, Murilo Vieira; KALIL, Jorge; CUNHA-NETO, Edecio; FERREIRA, Ludmila Rodrigues Pinto; COEIHO, Veronica
    Background: Operational tolerance (OT) is a state of graft functional stability that occurs after at least 1 year of immunosuppressant withdrawal. MicroRNAs (microRNA) are small non-coding RNAs that downregulate messenger RNA/protein expression of innumerous molecules and are critical for homeostasis. We investigated whether OT in kidney transplantation displays a differential microRNA profile, which would suggest that microRNAs participate in Operational Tolerance mechanisms, and may reveal potential molecular pathways. Methods: We first compared serum microRNA in OT (n = 8) with chronic rejection (CR) (n = 5) and healthy individuals (HI) (n = 5), using a 768-microRNA qPCR-panel. We used the Thermo Fisher Cloud computing platform to compare the levels of microRNAs in the OT group in relation to the other study groups. We performed validation experiments for miR-885-5p, by q-PCR, in a larger number of study subjects (OT = 8, CR = 12, HI = 12), as individual samples. Results: We detected a differential microRNA profile in OT vs. its opposing clinical outcome-CR-suggesting that microRNAs may integrate transplantation tolerance mechanisms. Some miRNAs were detected at higher levels in OT: miR-885-5p, miR-331-3p, miR-27a-5p vs. CR; others, we found at lower levels: miR-1233-3p, miR-572, miR-638, miR-1260a. Considering highly predicted/experimentally demonstrated targets of these miRNAs, bioinformatics analysis revealed that the granzyme B, and death receptor pathways are dominant, suggesting that cell death regulation integrates transplantation tolerance mechanisms. We confirmed higher miR-885-5p levels in OT vs. CR, and vs. HI, in a larger number of subjects. Conclusions: We propose that epigenetics mechanisms involving microRNAs may integrate human transplantation tolerance mechanisms, and regulate key members of the cell death/survival signaling. miR-885-5p could favor cell survival in OT by diminishing the levels of CRADD/RAIDD and CASP3. Nonetheless, given the nature of any complex phenomenon in humans, only cumulative data will help to determine whether this microRNA differential profile may be related to the cause or consequence of operational tolerance.
  • article 77 Citação(ões) na Scopus
    Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis?
    (2018) REAL, Juliana Monte; FERREIRA, Ludmila Rodrigues Pinto; ESTEVES, Gustavo Henrique; KOYAMA, Fernanda Christtanini; DIAS, Marcos Vincius Salles; BEZERRA-NETO, Joao Evangelista; CUNHA-NETO, Edecio; MACHADO, Flavia Ribeiro; SALOMAO, Reinaldo; AZEVEDO, Luciano Cesar Pontes
    Background: Exosomes isolated from plasma of patients with sepsis may induce vascular apoptosis and myocardial dysfunction by mechanisms related to inflammation and oxidative stress. Despite previous studies demonstrating that these vesicles contain genetic material related to cellular communication, their molecular cargo during sepsis is relatively unknown. In this study, we evaluated the presence of microRNAs (miRNAs) and messenger RNAs (mRNAs) related to inflammatory response and redox metabolism in exosomes of patients with septic shock. Methods: Blood samples were collected from 24 patients with septic shock at ICU admission and after 7 days of treatment. Twelve healthy volunteers were used as control subjects. Exosomes were isolated by ultracentrifugation, and their miRNA and mRNA content was evaluated by qRT-PCR array. Results: As compared with healthy volunteers, exosomes from patients with sepsis had significant changes in 65 exosomal miRNAs. Twenty-eight miRNAs were differentially expressed, both at enrollment and after 7 days, with similar kinetics (18 miRNAs upregulated and 10 downregulated). At enrollment, 35 differentially expressed miRNAs clustered patients with sepsis according to survival. The pathways enriched by the miRNAs of patients with sepsis compared with control subjects were related mostly to inflammatory response. The comparison of miRNAs from patients with sepsis according to hospital survival demonstrated pathways related mostly to cell cycle regulation. At enrollment, sepsis was associated with significant increases in the expression of mRNAs related to redox metabolism (myeloperoxidase, 64-fold; PRDX3, 2.6-fold; SOD2, 2.2-fold) and redox-responsive genes (FOXM1, 21-fold; SELS, 16-fold; GLRX2, 3.4-fold). The expression of myeloperoxidase mRNA remained elevated after 7 days (65-fold). Conclusions: Exosomes from patients with septic shock convey miRNAs and mRNAs related to pathogenic pathways, including inflammatory response, oxidative stress, and cell cycle regulation. Exosomes may represent a novel mechanism for intercellular communication during sepsis.
  • article 8 Citação(ões) na Scopus
    Rare Pathogenic Variants in Mitochondrial and Inflammation-Associated Genes May Lead to Inflammatory Cardiomyopathy in Chagas Disease
    (2021) OUARHACHE, Maryem; MARQUET, Sandrine; FRADE, Amanda Farage; FERREIRA, Ariela Mota; IANNI, Barbara; ALMEIDA, Rafael Ribeiro; NUNES, Joao Paulo Silva; FERREIRA, Ludmila Rodrigues Pinto; RIGAUD, Vagner Oliveira-Carvalho; CANDIDO, Darlan; MADY, Charles; ZANIRATTO, Ricardo Costa Fernandes; BUCK, Paula; TORRES, Magali; GALLARDO, Frederic; ANDRIEUX, Pauline; BYDLOWSKY, Sergio; LEVY, Debora; ABEL, Laurent; CARDOSO, Clareci Silva; SANTOS-JUNIOR, Omar Ribeiro; OLIVEIRA, Lea Campos; OLIVEIRA, Claudia Di Lorenzo; NUNES, Maria Do Carmo; COBAT, Aurelie; KALIL, Jorge; RIBEIRO, Antonio Luiz; SABINO, Ester Cerdeira; CUNHA-NETO, Edecio; CHEVILLARD, Christophe
    Cardiomyopathies are an important cause of heart failure and sudden cardiac death. Little is known about the role of rare genetic variants in inflammatory cardiomyopathy. Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory cardiomyopathy prevalent in Latin America, developing in 30% of the 6 million patients chronically infected by the protozoan Trypanosoma cruzi, while 60% remain free of heart disease (asymptomatic (ASY)). The cytokine interferon-gamma and mitochondrial dysfunction are known to play a major pathogenetic role. Chagas disease provides a unique model to probe for genetic variants involved in inflammatory cardiomyopathy. Methods We used whole exome sequencing to study nuclear families containing multiple cases of Chagas disease. We searched for rare pathogenic variants shared by all family members with CCC but absent in infected ASY siblings and in unrelated ASY. Results We identified heterozygous, pathogenic variants linked to CCC in all tested families on 22 distinct genes, from which 20 were mitochondrial or inflammation-related - most of the latter involved in proinflammatory cytokine production. Significantly, incubation with IFN-gamma on a human cardiomyocyte line treated with an inhibitor of dihydroorotate dehydrogenase brequinar (enzyme showing a loss-of-function variant in one family) markedly reduced mitochondrial membrane potential (Delta psi M), indicating mitochondrial dysfunction. Conclusion Mitochondrial dysfunction and inflammation may be genetically determined in CCC, driven by rare genetic variants. We hypothesize that CCC-linked genetic variants increase mitochondrial susceptibility to IFN-gamma-induced damage in the myocardium, leading to the cardiomyopathy phenotype in Chagas disease. This mechanism may also be operative in other inflammatory cardiomyopathies.
  • article 82 Citação(ões) na Scopus
    MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy
    (2014) FERREIRA, Ludmila Rodrigues Pinto; FRADE, Amanda Farage; SANTOS, Ronaldo Honorato Barros; TEIXEIRA, Priscila Camillo; BARON, Monique Andrade; NAVARRO, Isabela Cunha; BENVENUTI, Luiz Alberto; FIORELLI, Alfredo Inacio; BOCCHI, Edimar Alcides; STOLF, Noedir Antonio; CHEVILLARD, Christophe; KALIL, Jorge; CUNHA-NETO, Edecio
    Background/methods: Chagas disease is caused by an intracellular parasite, Trypanosoma cruzi, and it is a leading cause of heart failure in Latin America. The main clinical consequence of the infection is the development of a Chronic Chagas disease Cardiomyopathy (CCC), which is characterized by myocarditis, hypertrophy and fibrosis and affects about 30% of infected patients. CCC has a worse prognosis than other cardiomyopathies, like idiopathic dilated cardiomyopathy (DCM). It is well established that myocardial gene expression patterns are altered in CCC, but the molecular mechanisms underlying these differences are not clear. MicroRNAs are recently discovered regulators of gene expression, and are recognized as important factors in heart development and cardiovascular disorders (CD). We analyzed the expression of nine different miRNAs inmyocardial tissue samples of CCC patients in comparison to DCM patients and samples from heart transplant donors. Using the results of a cDNA microarray database on CCC and DCM myocardium, signaling networks were built and nodal molecules were identified. Results: We observed that five miRNAs were significantly altered in CCC and three in DCM; importantly, three miRNAs were significantly reduced in CCC as compared to DCM. We observed that multiple gene targets of the differentially expressed miRNAs showed a concordant inverse expression in CCC. Significantly, most gene targets and involved networks belong to crucial disease-related signaling pathways. Conclusion: These results suggest that miRNAs may play a major role in the regulation of gene expression in CCC pathogenesis, with potential implication as diagnostic and prognostic tools.
  • article 27 Citação(ões) na Scopus
    miRNAs may play a major role in the control of gene expression in key pathobiological processes in Chagas disease cardiomyopathy
    (2020) LAUGIER, Laurie; FERREIRA, Ludmila Rodrigues Pinto; FERREIRA, Frederico Moraes; CABANTOUS, Sandrine; FRADE, Amanda Farage; NUNES, Joao Paulo; RIBEIRO, Rafael Almeida; BROCHET, Pauline; TEIXEIRA, Priscila Camillo; SANTOS, Ronaldo Honorato Barros; BOCCHI, Edimar A.; BACAL, Fernando; CANDIDO, Darlan da Silva; MASO, Vanessa Escolano; NAKAYA, Helder I.; KALIL, Jorge; CUNHA-NETO, Edecio; CHEVILLARD, Christophe
    Chronic Chagas disease cardiomyopathy (CCC), an especially aggressive inflammatory dilated cardiomyopathy caused by lifelong infection with the protozoan Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Although chronic myocarditis may play a major pathogenetic role, little is known about the molecular mechanisms responsible for its severity. The aim of this study is to study the genes and microRNAs expression in tissues and their connections in regards to the pathobiological processes. To do so, we integrated for the first time global microRNA and mRNA expression profiling from myocardial tissue of CCC patients employing pathways and network analyses. We observed an enrichment in biological processes and pathways associated with the immune response and metabolism. IFN gamma, TNF and NFkB were the top upstream regulators. The intersections between differentially expressed microRNAs and differentially expressed target mRNAs showed an enrichment in biological processes such as Inflammation, inflammation, Th1/IFN-gamma-inducible genes, fibrosis, hypertrophy, and mitochondrial/oxidative stress/antioxidant response. MicroRNAs also played a role in the regulation of gene expression involved in the key cardiomyopathy-related processes fibrosis, hypertrophy, myocarditis and arrhythmia. Significantly, a discrete number of differentially expressed microRNAs targeted a high number of differentially expressed mRNAs (>20) in multiple processes. Our results suggest that miRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue. This may have a bearing on pathogenesis, biomarkers and therapy. Author summary Chronic Chagas disease cardiomyopathy (CCC), an aggressive dilated cardiomyopathy caused by Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Little is known about the molecular mechanisms responsible for its severity. Authors study the possible role of microRNAs in the regulation of gene expression in relevant pathways and pathobiological processes. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) -small RNAs that can regulate gene expression-associated to severe cardiomyopathy development. The inflammatory mediator Interferon-gamma was the most likely inducer of gene expression in CCC, and most genes belonged to the immune response, fibrosis, hypertrophy and mitochondrial metabolism. A discrete number of differentially expressed mRNAs targeted a high number of differentially expressed mRNAs in multiple processes. Moreover, several pathways had multiple targets regulated by microRNAs, suggesting synergic effect. Results suggest that microRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue.