LUDMILA RODRIGUES PINTO FERREIRA CAMARGO

(Fonte: Lattes)
Índice h a partir de 2011
13
Projetos de Pesquisa
Unidades Organizacionais
LIM/19 - Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 6 de 6
  • conferenceObject
    Circulating miR-1 And miR-133b Correlate With Subclinical Myocardial Injury In Breast Cancer Patients Under Doxorubicin Treatment
    (2015) OLIVEIRA-CARVALHO, Vagner; FERREIRA, Ludmila R.; BORGES, Danielle P.; AYUB-FERREIRA, Silvia M.; AVILA, Monica S.; BRANDAO, Sara M.; CRUZ, Fatima; CUNHA-NETO, Edecio; BOCCHI, Edimar A.
  • article 82 Citação(ões) na Scopus
    MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy
    (2014) FERREIRA, Ludmila Rodrigues Pinto; FRADE, Amanda Farage; SANTOS, Ronaldo Honorato Barros; TEIXEIRA, Priscila Camillo; BARON, Monique Andrade; NAVARRO, Isabela Cunha; BENVENUTI, Luiz Alberto; FIORELLI, Alfredo Inacio; BOCCHI, Edimar Alcides; STOLF, Noedir Antonio; CHEVILLARD, Christophe; KALIL, Jorge; CUNHA-NETO, Edecio
    Background/methods: Chagas disease is caused by an intracellular parasite, Trypanosoma cruzi, and it is a leading cause of heart failure in Latin America. The main clinical consequence of the infection is the development of a Chronic Chagas disease Cardiomyopathy (CCC), which is characterized by myocarditis, hypertrophy and fibrosis and affects about 30% of infected patients. CCC has a worse prognosis than other cardiomyopathies, like idiopathic dilated cardiomyopathy (DCM). It is well established that myocardial gene expression patterns are altered in CCC, but the molecular mechanisms underlying these differences are not clear. MicroRNAs are recently discovered regulators of gene expression, and are recognized as important factors in heart development and cardiovascular disorders (CD). We analyzed the expression of nine different miRNAs inmyocardial tissue samples of CCC patients in comparison to DCM patients and samples from heart transplant donors. Using the results of a cDNA microarray database on CCC and DCM myocardium, signaling networks were built and nodal molecules were identified. Results: We observed that five miRNAs were significantly altered in CCC and three in DCM; importantly, three miRNAs were significantly reduced in CCC as compared to DCM. We observed that multiple gene targets of the differentially expressed miRNAs showed a concordant inverse expression in CCC. Significantly, most gene targets and involved networks belong to crucial disease-related signaling pathways. Conclusion: These results suggest that miRNAs may play a major role in the regulation of gene expression in CCC pathogenesis, with potential implication as diagnostic and prognostic tools.
  • article 27 Citação(ões) na Scopus
    miRNAs may play a major role in the control of gene expression in key pathobiological processes in Chagas disease cardiomyopathy
    (2020) LAUGIER, Laurie; FERREIRA, Ludmila Rodrigues Pinto; FERREIRA, Frederico Moraes; CABANTOUS, Sandrine; FRADE, Amanda Farage; NUNES, Joao Paulo; RIBEIRO, Rafael Almeida; BROCHET, Pauline; TEIXEIRA, Priscila Camillo; SANTOS, Ronaldo Honorato Barros; BOCCHI, Edimar A.; BACAL, Fernando; CANDIDO, Darlan da Silva; MASO, Vanessa Escolano; NAKAYA, Helder I.; KALIL, Jorge; CUNHA-NETO, Edecio; CHEVILLARD, Christophe
    Chronic Chagas disease cardiomyopathy (CCC), an especially aggressive inflammatory dilated cardiomyopathy caused by lifelong infection with the protozoan Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Although chronic myocarditis may play a major pathogenetic role, little is known about the molecular mechanisms responsible for its severity. The aim of this study is to study the genes and microRNAs expression in tissues and their connections in regards to the pathobiological processes. To do so, we integrated for the first time global microRNA and mRNA expression profiling from myocardial tissue of CCC patients employing pathways and network analyses. We observed an enrichment in biological processes and pathways associated with the immune response and metabolism. IFN gamma, TNF and NFkB were the top upstream regulators. The intersections between differentially expressed microRNAs and differentially expressed target mRNAs showed an enrichment in biological processes such as Inflammation, inflammation, Th1/IFN-gamma-inducible genes, fibrosis, hypertrophy, and mitochondrial/oxidative stress/antioxidant response. MicroRNAs also played a role in the regulation of gene expression involved in the key cardiomyopathy-related processes fibrosis, hypertrophy, myocarditis and arrhythmia. Significantly, a discrete number of differentially expressed microRNAs targeted a high number of differentially expressed mRNAs (>20) in multiple processes. Our results suggest that miRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue. This may have a bearing on pathogenesis, biomarkers and therapy. Author summary Chronic Chagas disease cardiomyopathy (CCC), an aggressive dilated cardiomyopathy caused by Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Little is known about the molecular mechanisms responsible for its severity. Authors study the possible role of microRNAs in the regulation of gene expression in relevant pathways and pathobiological processes. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) -small RNAs that can regulate gene expression-associated to severe cardiomyopathy development. The inflammatory mediator Interferon-gamma was the most likely inducer of gene expression in CCC, and most genes belonged to the immune response, fibrosis, hypertrophy and mitochondrial metabolism. A discrete number of differentially expressed mRNAs targeted a high number of differentially expressed mRNAs in multiple processes. Moreover, several pathways had multiple targets regulated by microRNAs, suggesting synergic effect. Results suggest that microRNAs orchestrate expression of multiple genes in the major pathophysiological processes in CCC heart tissue.
  • article 89 Citação(ões) na Scopus
    Circulating miR-1 as a potential biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients
    (2017) RIGAUD, Vagner Oliveira-Carvalho; FERREIRA, Ludmila R. P.; AYUB-FERREIRA, Silvia M.; AVILA, Monica S.; BRANDAO, Sara M. G.; CRUZ, Fatima D.; SANTOS, Marilia H. H.; CRUZ, Cecilia B. B. V.; ALVES, Marco S. L.; ISSA, Victor S.; GUIMARAES, Guilherme V.; CUNHA-NETO, Edecio; BOCCHI, Edimar A.
    Cardiotoxicity is associated with the chronic use of doxorubicin leading to cardiomyopathy and heart failure. Identification of cardiotoxicity-specific miRNA biomarkers could provide clinicians with a valuable prognostic tool. The aim of the study was to evaluate circulating levels of miRNAs in breast cancer patients receiving doxorubicin treatment and to correlate with cardiac function. This is an ancillary study from ""Carvedilol Effect on Chemotherapy-induced Cardiotoxicity"" (CECCY trial), which included 56 female patients (49.9 +/- 3.3 years of age) from the placebo arm. Enrolled patients were treated with doxorubicin followed by taxanes. cTnI, LVEF, and miRNAs were measured periodically. Circulating levels of miR-1,-133b,-146a, and -423-5p increased during the treatment whereas miR-208a and -208b were undetectable. cTnI increased from 6.6 +/- 0.3 to 46.7 +/- 5.5 pg/mL (p<0.001), while overall LVEF tended to decrease from 65.3 +/- 0.5 to 63.8 +/- 0.9 (p=0.053) over 12 months. Ten patients (17.9%) developed cardiotoxicity showing a decrease in LVEF from 67.2 +/- 1.0 to 58.8 +/- 2.7 (p=0.005). miR-1 was associated with changes in LVEF (r=-0.531, p<0.001). In a ROC curve analysis miR-1 showed an AUC greater than cTnI to discriminate between patients who did and did not develop cardiotoxicity (AUC = 0.851 and 0.544, p = 0.0016). Our data suggest that circulating miR-1 might be a potential new biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients.
  • article 29 Citação(ões) na Scopus
    Circulating mir-208a fails as a biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients
    (2015) OLIVEIRA-CARVALHO, Vagner; FERREIRA, Ludmila Rodrigues Pinto; BOCCHI, Edimar Alcides
  • article 36 Citação(ões) na Scopus
    Whole-Genome Cardiac DNA Methylation Fingerprint and Gene Expression Analysis Provide New Insights in the Pathogenesis of Chronic Chagas Disease Cardiomyopathy
    (2017) LAUGIER, Laurie; FRADE, Amanda Farage; FERREIRA, Frederico Moraes; BARON, Monique Andrade; TEIXEIRA, Priscila Camillo; CABANTOUS, Sandrine; FERREIRA, Ludmila Rodrigues Pinto; LOUIS, Laurence; RIGAUD, Vagner Oliveira Carvalho; GAIOTTO, Fabio Antonio; BACAL, Fernando; POMERANTZEFF, Pablo; BOCCHI, Edimar; KALIL, Jorge; SANTOS, Ronaldo Honorato Barros; CUNHA-NETO, Edecio; CHEVILLARD, Christophe
    Background. Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and affects 10 million people worldwide. Approximately 12 000 deaths attributable to Chagas disease occur annually due to chronic Chagas disease cardiomyopathy (CCC), an inflammatory cardiomyopathy presenting with heart failure and arrythmia; 30% of infected subjects develop CCC years after infection. Genetic mechanisms play a role in differential progression to CCC, but little is known about the role of epigenetic modifications in pathological gene expression patterns in CCC patients' myocardium. DNA methylation is the most common modification in the mammalian genome. Methods. We investigated the impact of genome-wide cardiac DNA methylation on global gene expression in myocardial samples from end-stage CCC patients, compared to control samples from organ donors. Results. In total, 4720 genes were differentially methylated between CCC patients and controls, of which 399 were also differentially expressed. Several of them were related to heart function or to the immune response and had methylation sites in their promoter region. Reporter gene and in silico transcription factor binding analyses indicated promoter methylation modified expression of key genes. Among those, we found potassium channel genes KCNA4 and KCNIP4, involved in electrical conduction and arrythmia, SMOC2, involved in matrix remodeling, as well as enkephalin and RUNX3, potentially involved in the increased T-helper 1 cytokine-mediated inflammatory damage in heart. Conclusions. Results support that DNA methylation plays a role in the regulation of expression of pathogenically relevant genes in CCC myocardium, and identify novel potential disease pathways and therapeutic targets in CCC.