JOAO PAULO PORTELA CATANI

(Fonte: Lattes)
Índice h a partir de 2011
6
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • conferenceObject
    Use of p19Arf/interferon-beta immunotherapy in association with chemotherapy permits reduced drug dosage and avoids cardiotoxicity associated with doxorubicin
    (2019) STRAUSS, Bryan E.; MEDRANO, Ruan F. V.; TAMURA, Rodrigo; MENDONCA, Samir A.; FEITOSA, Valker A.; DARIOLLI, Rafael; SALLES, Thiago A.; HUNGER, Aline; CATANI, Joao P. P.; RODRIGUES, Elaine G.
  • article 7 Citação(ões) na Scopus
    Near future of tumor immunology: Anticipating resistance mechanisms to immunotherapies, a big challenge for clinical trials
    (2017) CATANI, Joao Paulo Portela; RIECHELMANN, Rachel P.; ADJEMIAN, Sandy; STRAUSS, Bryan E.
    The success of immunotherapies brings hope for the future of cancer treatment. Even so, we are faced with a new challenge, that of understanding which patients will respond initially and, possibly, develop resistance. The examination of the immune profile, especially approaches related to the immunoscore, may foretell which tumors will have a positive initial response. Ideally, the mutation load would also be analyzed, helping to reveal tumor associated antigens that are predictive of an effective cytolytic attack. However, the response may be hindered by changes induced in the tumor and its microenvironment during treatment, perhaps stemming from the therapy itself. To monitor such alterations, we suggest that minimally invasive approaches should be explored, such as the analysis of circulating tumor DNA. When testing new drugs, the data collected from each patient would initially represent an N of 1 clinical trial that could then be deposited in large databases and mined retrospectively for trends and correlations between genetic alterations and response to therapy. We expect that the investment in personalized approaches that couple molecular analysis during clinical trials will yield critical data that, in the future, may be used to predict the outcome of novel immunotherapies.
  • article 19 Citação(ões) na Scopus
    Vaccination using melanoma cells treated with p19arf and interferon beta gene transfer in a mouse model: a novel combination for cancer immunotherapy
    (2016) MEDRANO, Ruan Felipe Vieira; CATANI, Joao Paulo Portela; RIBEIRO, Aline Hunger; TOMAZ, Samanta Lopes; MERKEL, Christian A.; COSTANZI-STRAUSS, Eugenia; STRAUSS, Bryan E.
    Previously, we combined p19(Arf) (Cdkn2a, tumor suppressor protein) and interferon beta (IFN-beta, immunomodulatory cytokine) gene transfer in order to enhance cell death in a murine model of melanoma. Here, we present evidence of the immune response induced when B16 cells succumbing to death due to treatment with p19(Arf) and IFN-beta are applied in vaccine models. Use of dying cells for prophylactic vaccination was investigated, identifying conditions for tumor-free survival. After combined p19(Arf) and IFN-beta treatment, we observed immune rejection at the vaccine site in immune competent and nude mice with normal NK activity, but not in NOD-SCID and dexamethasone immunosuppressed mice (NK deficient). Combined treatment induced IL-15, ULBP1, FAS/APO1 and KILLER/DR5 expression, providing a mechanism for NK activation. Prophylactic vaccination protected against tumor challenge, where markedly delayed progression and leukocyte infiltration were observed. Analysis of primed lymphocytes revealed secretion of TH1-related cytokines and depletion protocols showed that both CD4(+) and CD8(+) T lymphocytes are necessary for immune protection. However, application of this prophylactic vaccine where cells were treated either with IFN-beta alone or combined with p19(Arf) conferred similar immune protection and cytokine activation, yet only the combination was associated with increased overall survival. In a therapeutic vaccine protocol, only the combination was associated with reduced tumor progression. Our results indicate that by harnessing cell death in an immunogenic context, our p19(Arf) and IFN-beta combination offers a clear advantage when both genes are included in the vaccine and warrants further development as a novel immunotherapy for melanoma.
  • article 8 Citação(ões) na Scopus
    Uncovering the immunotherapeutic cycle initiated by p19Arf and interferon-beta gene transfer to cancer cells: An inducer of immunogenic cell death
    (2017) MEDRANO, Ruan F. V.; HUNGER, Aline; CATANI, Joao P. P.; STRAUSS, Bryan E.
    Simultaneous reestablishment of p53/p19(Arf) and interferon-beta pathways in melanoma cells culminates in a cell death process that displays features of necroptosis along with the release of immunogenic cell death molecules and unleashes an antitumor immune response mediated by natural killer cells, neutrophils as well as CD4(+) and CD8(+) T lymphocytes.
  • article 537 Citação(ões) na Scopus
    Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells
    (2013) MA, Yuting; ADJEMIAN, Sandy; MATTAROLLO, Stephen R.; YAMAZAKI, Takahiro; AYMERIC, Laetitia; YANG, Heng; CATANI, Joao Paulo Portela; HANNANI, Dalil; DURET, Helene; STEEGH, Kim; MARTINS, Isabelle; SCHLEMMER, Frederic; MICHAUD, Mickael; KEPP, Oliver; SUKKURWALA, Abdul Qader; MENGER, Laurie; VACCHELLI, Erika; DROIN, Nathalie; GALLUZZI, Lorenzo; KRZYSIEK, Roman; GORDON, Siamon; TAYLOR, Philip R.; ENDERT, Peter Van; SOLARY, Eric; SMYTH, Mark J.; ZITVOGEL, Laurence; KROEMER, Guido
    The therapeutic efficacy of anthracyclines relies on antitumor immune responses elicited by dying cancer cells. How chemotherapy-induced cell death leads to efficient antigen presentation to T cells, however, remains a conundrum. We found that intra-tumoral CD11c(+)CD11b(+)Ly6C(hi) cells, which displayed some characteristics of inflammatory dendritic cells and included granulomonocytic precursors, were crucial for anthracycline-induced anticancer immune responses. ATP released by dying cancer cells recruited myeloid cells into tumors and stimulated the local differentiation of CD11c(+)CD11b(+)Ly6C(hi) cells. Such cells efficiently engulfed tumor antigens in situ and presented them to T lymphocytes, thus vaccinating mice, upon adoptive transfer, against a challenge with cancer cells. Manipulations preventing tumor infiltration by CD11c(+)CD11b(+)Ly6C(hi) cells, such as the local overexpression of ectonucleotidases, the blockade of purinergic receptors, or the neutralization of CD11b, abolished the immune system-dependent antitumor activity of anthracyclines. Our results identify a subset of tumor-infiltrating leukocytes as therapy-relevant antigen-presenting cells.