FABIA DINIZ SILVA

(Fonte: Lattes)
Índice h a partir de 2011
3
Projetos de Pesquisa
Unidades Organizacionais
LIM/09 - Laboratório de Pneumologia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • conferenceObject
    Knowledge, Attitudes And Practices Among Critical Care Professionals Towards Patient-Ventilator Asynchrony: A Pilot Survey
    (2017) SOUSA, M. L. A.; FELTRIM, M. I. Z.; DINIZ-SILVA, F.; HAYASHI, F. K.; CARVALHO, C. R. R.; FERREIRA, J. C.
  • article 40 Citação(ões) na Scopus
    Neurally Adjusted Ventilatory Assist (NAVA) or Pressure Support Ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial
    (2017) FERREIRA, Juliana C.; DINIZ-SILVA, Fabia; MORIYA, Henrique T.; ALENCAR, Adriano M.; AMATO, Marcelo B. P.; CARVALHO, Carlos R. R.
    Background: Neurally Adjusted Ventilatory Assist (NAVA) is a proportional ventilatory mode that uses the electrical activity of the diaphragm (EAdi) to offer ventilatory assistance in proportion to patient effort. NAVA has been increasingly used for critically ill patients, but it has not been evaluated during spontaneous breathing trials (SBT). We designed a pilot trial to assess the feasibility of using NAVA during SBTs, and to compare the breathing pattern and patient-ventilator asynchrony of NAVA with Pressure Support (PSV) during SBTs. Methods: We conducted a crossover trial in the ICU of a university hospital in Brazil and included mechanically ventilated patients considered ready to undergo an SBT on the day of the study. Patients underwent two SBTs in randomized order: 30 min in PSV of 5 cmH(2)O or NAVA titrated to generate equivalent peak airway pressure (Paw), with a positive end-expiratory pressure of 5 cmH(2)O. The ICU team, blinded to ventilatory mode, evaluated whether patients passed each SBT. We captured flow, Paw and electrical activity of the diaphragm (EAdi) from the ventilator and used it to calculate respiratory rate (RR), tidal volume (VT), and EAdi. Detection of asynchrony events used waveform analysis and we calculated the asynchrony index as the number of asynchrony events divided by the number of neural cycles. Results: We included 20 patients in the study. All patients passed the SBT in PSV, and three failed the SBT in NAVA. Five patients were reintubated and the extubation failure rate was 25% (95% CI 9-49%). Respiratory parameters were similar in the two modes: VT = 6.1 (5.5-6.5) mL/Kg in NAVA vs. 5.5 (4.8-6.1) mL/Kg in PSV (p = 0.076) and RR = 27 (17-30) rpm in NAVA vs. 26 (20-30) rpm in PSV, p = 0.55. NAVA reduced AI, with a median of 11.5% (4.2-19.7) compared to 24.3% (6.3-34.3) in PSV (p = 0.033). Conclusions: NAVA reduces patient-ventilator asynchrony index and generates a respiratory pattern similar to PSV during SBTs. Patients considered ready for mechanical ventilation liberation may be submitted to an SBT in NAVA using the same objective criteria used for SBTs in PSV.
  • article 3 Citação(ões) na Scopus
    Monitoring the electric activity of the diaphragm during noninvasive positive pressure ventilation: a case report
    (2017) DINIZ-SILVA, Fabia; MIETHKE-MORAIS, Anna; ALENCAR, Adriano M.; MORIYA, Henrique T.; CARUSO, Pedro; COSTA, Eduardo L. V.; FERREIRA, Juliana C.
    Background: In patients with post-extubation respiratory distress, delayed reintubation may worsen clinical outcomes. Objective measures of extubation failure at the bedside are lacking, therefore clinical parameters are currently used to guide the need of reintubation. Electrical activity of the diaphragm (EAdi) provides clinicians with valuable, objective information about respiratory drive and could be used to monitor respiratory effort. Case presentation: We describe the case of a patient with Chronic Obstructive Pulmonary Disease (COPD), from whom we recorded EAdi during four different ventilatory conditions: 1) invasive mechanical ventilation, 2) spontaneous breathing trial (SBT), 3) unassisted spontaneous breathing, and 4) Noninvasive Positive Pressure Ventilation (NPPV). The patient had been intubated due to an exacerbation of COPD, and after four days of mechanical ventilation, she passed the SBT and was extubated. Clinical signs of respiratory distress were present immediately after extubation, and EAdi increased compared to values obtained during mechanical ventilation. As we started NPPV, EAdi decreased substantially, indicating muscle unloading promoted by NPPV, and we used the EAdi signal to monitor respiratory effort during NPPV. Over the next three days, she was on NPPV for most of the time, with short periods of spontaneous breathing. EAdi remained considerably lower during NPPV than during spontaneous breathing, until the third day, when the difference was no longer clinically significant. She was then weaned from NPPV and discharged from the ICU a few days later. Conclusion: EAdi monitoring during NPPV provides an objective parameter of respiratory drive and respiratory muscle unloading and may be a useful tool to guide post-extubation ventilatory support. Clinical studies with continuous EAdi monitoring are necessary to clarify the meaning of its absolute values and changes over time.