DARLAN DA SILVA CANDIDO

(Fonte: Lattes)
Índice h a partir de 2011
5
Projetos de Pesquisa
Unidades Organizacionais
LIM/19 - Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • article 10 Citação(ões) na Scopus
    Differential microRNA Profile in Operational Tolerance: A Potential Role in Favoring Cell Survival
    (2019) CABRAL, Amanda; CANDIDO, Daran da Silva; MONTEIRO, Sandra Maria; LEMOS, Francine; SAITOVITCH, David; NORONHA, Irene L.; ALVES, Leticia Ferreira; GERAIDO, Murilo Vieira; KALIL, Jorge; CUNHA-NETO, Edecio; FERREIRA, Ludmila Rodrigues Pinto; COEIHO, Veronica
    Background: Operational tolerance (OT) is a state of graft functional stability that occurs after at least 1 year of immunosuppressant withdrawal. MicroRNAs (microRNA) are small non-coding RNAs that downregulate messenger RNA/protein expression of innumerous molecules and are critical for homeostasis. We investigated whether OT in kidney transplantation displays a differential microRNA profile, which would suggest that microRNAs participate in Operational Tolerance mechanisms, and may reveal potential molecular pathways. Methods: We first compared serum microRNA in OT (n = 8) with chronic rejection (CR) (n = 5) and healthy individuals (HI) (n = 5), using a 768-microRNA qPCR-panel. We used the Thermo Fisher Cloud computing platform to compare the levels of microRNAs in the OT group in relation to the other study groups. We performed validation experiments for miR-885-5p, by q-PCR, in a larger number of study subjects (OT = 8, CR = 12, HI = 12), as individual samples. Results: We detected a differential microRNA profile in OT vs. its opposing clinical outcome-CR-suggesting that microRNAs may integrate transplantation tolerance mechanisms. Some miRNAs were detected at higher levels in OT: miR-885-5p, miR-331-3p, miR-27a-5p vs. CR; others, we found at lower levels: miR-1233-3p, miR-572, miR-638, miR-1260a. Considering highly predicted/experimentally demonstrated targets of these miRNAs, bioinformatics analysis revealed that the granzyme B, and death receptor pathways are dominant, suggesting that cell death regulation integrates transplantation tolerance mechanisms. We confirmed higher miR-885-5p levels in OT vs. CR, and vs. HI, in a larger number of subjects. Conclusions: We propose that epigenetics mechanisms involving microRNAs may integrate human transplantation tolerance mechanisms, and regulate key members of the cell death/survival signaling. miR-885-5p could favor cell survival in OT by diminishing the levels of CRADD/RAIDD and CASP3. Nonetheless, given the nature of any complex phenomenon in humans, only cumulative data will help to determine whether this microRNA differential profile may be related to the cause or consequence of operational tolerance.
  • article 39 Citação(ões) na Scopus
    Myocardial Infarction-Associated Transcript, a Long Noncoding RNA, Is Overexpressed During Dilated Cardiomyopathy Due to Chronic Chagas Disease
    (2016) FRADE, Amanda Farage; LAUGIER, Laurie; FERREIRA, Ludmila Rodrigues Pinto; BARON, Monique Andrade; BENVENUTI, Luiz Alberto; TEIXEIRA, Priscila Camillo; NAVARRO, Isabela Cunha; CABANTOUS, Sandrine; FERREIRA, Frederico Moraes; CANDIDO, Darlan da Silva; GAIOTTO, Fabio Antonio; BACAL, Fernando; POMERANTZEFF, Pablo; SANTOS, Ronaldo Honorato Barros; KALIL, Jorge; CUNHA-NETO, Edecio; CHEVILLARD, Christophe
    Long noncoding RNAs (lncRNAs) modulate gene expression at the epigenetic, transcriptional, and posttranscriptional levels. Dysregulation of the lncRNA known as myocardial infarction-associated transcript (MIAT) has been associated with myocardial infarction. Chagas disease causes a severe inflammatory dilated chronic cardiomyopathy (CCC). We investigated the role of MIAT in CCC. A whole-transcriptome analysis of heart biopsy specimens and formalin-fixed, paraffin-embedded samples revealed that MIAT was overexpressed in patients with CCC, compared with subjects with noninflammatory dilated cardiomyopathy and controls. These results were confirmed in a mouse model. Results suggest that MIAT is a specific biomarker of CCC.
  • article 37 Citação(ões) na Scopus
    Integration of miRNA and gene expression profiles suggest a role for miRNAs in the pathobiological processes of acute Trypanosoma cruzi infection
    (2017) FERREIRA, Ludmila Rodrigues Pinto; FERREIRA, Frederico Moraes; LAUGIER, Laurie; CABANTOUS, Sandrine; NAVARRO, Isabela Cunha; CANDIDO, Darlan da Silva; RIGAUD, Vagner Carvalho; REAL, Juliana Monte; PEREIRA, Glaucia Vilar; PEREIRA, Isabela Resende; RUIVO, Leonardo; PANDEY, Ramendra Pati; SAVOIA, Marilda; KALIL, Jorge; LANNES-VIEIRA, Joseli; NAKAYA, Helder; CHEVILLARD, Christophe; CUNHA-NETO, Edecio
    Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America. Its acute phase is associated with high parasitism, myocarditis and profound myocardial gene expression changes. A chronic phase ensues where 30% develop severe heart lesions. Mouse models of T. cruzi infection have been used to study heart damage in Chagas disease. The aim of this study was to provide an interactome between miRNAs and their targetome in Chagas heart disease by integrating gene and microRNA expression profiling data from hearts of T. cruzi infected mice. Gene expression profiling revealed enrichment in biological processes and pathways associated with immune response and metabolism. Pathways, functional and upstream regulator analysis of the intersections between predicted targets of differentially expressed microRNAs and differentially expressed mRNAs revealed enrichment in biological processes and pathways such as IFN gamma, TNF alpha, NF-kappa B signaling signatures, CTL-mediated apoptosis, mitochondrial dysfunction, and Nrf2-modulated antioxidative responses. We also observed enrichment in other key heart disease-related processes like myocarditis, fibrosis, hypertrophy and arrhythmia. Our correlation study suggests that miRNAs may be implicated in the pathophysiological processes taking place the hearts of acutely T. cruzi-infected mice.
  • article 25 Citação(ões) na Scopus
    Blood Gene Signatures of Chagas Cardiomyopathy With or Without Ventricular Dysfunction
    (2017) FERREIRA, Ludmila Rodrigues Pinto; FERREIRA, Frederico Moraes; NAKAYA, Helder Imoto; DENG, Xutao; CNDIDO, Darlan da Silva; OLIVEIRA, Lea Campos de; BILLAUD, Jean-Noel; LANTERI, Marion C.; RIGAUD, Vagner Oliveira-Carvalho; SEIELSTAD, Mark; KALIL, Jorge; FERNANDES, Fabio; RIBEIRO, Antonio Luiz P.; SABINO, Ester Cerdeira; CUNHA-NETO, Edecio
    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects 7 million people in Latin American areas of endemicity. About 30% of infected patients will develop chronic Chagas cardiomyopathy (CCC), an inflammatory cardiomyopathy characterized by hypertrophy, fibrosis, and myocarditis. Further studies are necessary to understand the molecular mechanisms of disease progression. Transcriptome analysis has been increasingly used to identify molecular changes associated with disease outcomes. We thus assessed the whole-blood transcriptome of patients with Chagas disease. Microarray analysis was performed on blood samples from 150 subjects, of whom 30 were uninfected control patients and 120 had Chagas disease (1 group had asymptomatic disease, and 2 groups had CCC with either a preserved or reduced left ventricular ejection fraction [LVEF]). Each Chagas disease group displayed distinct gene expression and functional pathway profiles. The most different expression patterns were between CCC groups with a preserved or reduced LVEF. A more stringent analysis indicated that 27 differentially expressed genes, particularly those related to natural killer (NK)/CD8(+) T-cell cytotoxicity, separated the 2 groups. NK/CD8(+) T-cell cytotoxicity could play a role in determining Chagas disease progression. Understanding genes associated with disease may lead to improved insight into CCC pathogenesis and the identification of prognostic factors for CCC progression.