ISABELA CUNHA NAVARRO

(Fonte: Lattes)
Índice h a partir de 2011
4
Projetos de Pesquisa
Unidades Organizacionais
LIM/19 - Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • article 82 Citação(ões) na Scopus
    MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy
    (2014) FERREIRA, Ludmila Rodrigues Pinto; FRADE, Amanda Farage; SANTOS, Ronaldo Honorato Barros; TEIXEIRA, Priscila Camillo; BARON, Monique Andrade; NAVARRO, Isabela Cunha; BENVENUTI, Luiz Alberto; FIORELLI, Alfredo Inacio; BOCCHI, Edimar Alcides; STOLF, Noedir Antonio; CHEVILLARD, Christophe; KALIL, Jorge; CUNHA-NETO, Edecio
    Background/methods: Chagas disease is caused by an intracellular parasite, Trypanosoma cruzi, and it is a leading cause of heart failure in Latin America. The main clinical consequence of the infection is the development of a Chronic Chagas disease Cardiomyopathy (CCC), which is characterized by myocarditis, hypertrophy and fibrosis and affects about 30% of infected patients. CCC has a worse prognosis than other cardiomyopathies, like idiopathic dilated cardiomyopathy (DCM). It is well established that myocardial gene expression patterns are altered in CCC, but the molecular mechanisms underlying these differences are not clear. MicroRNAs are recently discovered regulators of gene expression, and are recognized as important factors in heart development and cardiovascular disorders (CD). We analyzed the expression of nine different miRNAs inmyocardial tissue samples of CCC patients in comparison to DCM patients and samples from heart transplant donors. Using the results of a cDNA microarray database on CCC and DCM myocardium, signaling networks were built and nodal molecules were identified. Results: We observed that five miRNAs were significantly altered in CCC and three in DCM; importantly, three miRNAs were significantly reduced in CCC as compared to DCM. We observed that multiple gene targets of the differentially expressed miRNAs showed a concordant inverse expression in CCC. Significantly, most gene targets and involved networks belong to crucial disease-related signaling pathways. Conclusion: These results suggest that miRNAs may play a major role in the regulation of gene expression in CCC pathogenesis, with potential implication as diagnostic and prognostic tools.
  • article 14 Citação(ões) na Scopus
    Induction of IL-12 Production in Human Peripheral Monocytes by Trypanosoma cruzi Is Mediated by Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins and Potentiated by IFN-gamma and CD40-CD40L Interactions
    (2014) ABEL, Lucia Cristina Jamli; FERREIRA, Ludmila Rodrigues Pinto; NAVARRO, Isabela Cunha; BARON, Monique Andrade; KALIL, Jorge; GAZZINELLI, Ricardo Tostes; RIZZO, Luiz Vicente; CUNHA-NETO, Edecio
    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is characterized by immunopathology driven by IFN-gamma secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products-like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins)-are potent inducers of proinflammatory responses (i.e., cytokines and NO production) by IFN-gamma primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-gamma. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins.
  • article 54 Citação(ões) na Scopus
    MicroRNA Transcriptome Profiling in Heart of Trypanosoma cruzi-Infected Mice: Parasitological and Cardiological Outcomes
    (2015) NAVARRO, Isabela Cunha; FERREIRA, Frederico Moraes; NAKAYA, Helder I.; BARON, Monique Andrade; VILAR-PEREIRA, Glaucia; PEREIRA, Isabela Resende; SILVA, Ana Maria Goncalves; REAL, Juliana Monte; BRITO, Thales De; CHEVILLARD, Christophe; LANNES-VIEIRA, Joseli; KALIL, Jorge; CUNHA-NETO, Edecio; FERREIRA, Ludmila Rodrigues Pinto
    Chagas disease is caused by the parasite Trypanosoma cruzi, and it begins with a short acute phase characterized by high parasitemia followed by a life-long chronic phase with scarce parasitism. Cardiac involvement is the most prominent manifestation, as 30% of infected subjects will develop abnormal ventricular repolarization with myocarditis, fibrosis and cardiomyocyte hypertrophy by undefined mechanisms. Nevertheless, follow-up studies in chagasic patients, as well as studies with murine models, suggest that the intensity of clinical symptoms and pathophysiological events that occur during the acute phase of disease are associated with the severity of cardiac disease observed during the chronic phase. In the present study we investigated the role of microRNAs (miRNAs) in the disease progression in response to T. cruzi infection, as alterations in miRNA levels are known to be associated with many cardiovascular disorders. We screened 641 rodent miRNAs in heart samples of mice during an acute infection with the Colombiana T.cruzi strain and identified multiple miRNAs significantly altered upon infection. Seventeen miRNAs were found significantly deregulated in all three analyzed time points post infection. Among these, six miRNAs had their expression correlated with clinical parameters relevant to the disease, such as parasitemia and maximal heart rate-corrected QT (QTc) interval. Computational analyses identified that the gene targets for these six miRNAs were involved in networks and signaling pathways related to increased ventricular depolarization and repolarization times, important factors for QTc interval prolongation. The data presented here will guide further studies about the contribution of microRNAs to Chagas heart disease pathogenesis.
  • article 39 Citação(ões) na Scopus
    Myocardial Infarction-Associated Transcript, a Long Noncoding RNA, Is Overexpressed During Dilated Cardiomyopathy Due to Chronic Chagas Disease
    (2016) FRADE, Amanda Farage; LAUGIER, Laurie; FERREIRA, Ludmila Rodrigues Pinto; BARON, Monique Andrade; BENVENUTI, Luiz Alberto; TEIXEIRA, Priscila Camillo; NAVARRO, Isabela Cunha; CABANTOUS, Sandrine; FERREIRA, Frederico Moraes; CANDIDO, Darlan da Silva; GAIOTTO, Fabio Antonio; BACAL, Fernando; POMERANTZEFF, Pablo; SANTOS, Ronaldo Honorato Barros; KALIL, Jorge; CUNHA-NETO, Edecio; CHEVILLARD, Christophe
    Long noncoding RNAs (lncRNAs) modulate gene expression at the epigenetic, transcriptional, and posttranscriptional levels. Dysregulation of the lncRNA known as myocardial infarction-associated transcript (MIAT) has been associated with myocardial infarction. Chagas disease causes a severe inflammatory dilated chronic cardiomyopathy (CCC). We investigated the role of MIAT in CCC. A whole-transcriptome analysis of heart biopsy specimens and formalin-fixed, paraffin-embedded samples revealed that MIAT was overexpressed in patients with CCC, compared with subjects with noninflammatory dilated cardiomyopathy and controls. These results were confirmed in a mouse model. Results suggest that MIAT is a specific biomarker of CCC.