DNAJB12 and DNJB14 are non-redundant Hsp40 redox chaperones involved in endoplasmic reticulum protein reflux

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Citação
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, v.1868, n.1, article ID 130502, 16p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The endoplasmic reticulum (ER) transmembrane chaperones DNAJB12(B12) and DNAJB14(B14) are cofactors that cooperate with cytosolic Heat Shock-70 protein (HSC70) facilitating folding/degradation of nascent membrane proteins and supporting the ER-membrane penetration of viral particles. Here, we assessed structural/functional features of B12/B14 with respect to their regulation by ER stress and their involvement in ER stress-mediated protein reflux.Methods: We investigated the effect of Unfolded Protein Response(UPR)-eliciting drugs on the expression/ regulation of B12-B14 and their roles in ER-to-cytosol translocation of Protein Disulfide Isomerase-A1(PDI).Results: We show that B12 and B14 are similar but do not seem redundant. They share predicted structural features and show high homology of their cytosolic J-domains, while their ER-lumen DUF1977 domains are quite dissimilar. Interactome analysis suggested that B12/B14 associate with different biological processes. UPR activation did not significantly impact on B12 gene expression, while B14 transcripts were up-regulated. Meanwhile, B12 and B14 (33.4 kDa isoform) protein levels were degraded by the proteasome upon acute reductive challenge. Also, B12 degradation was impaired upon sulfenic-acid trapping by dimedone. We originally report that knockdown of B12/B14 and their cytosolic partner SGTA in ER-stressed cells significantly impaired the amount of the ER redox-chaperone PDI in a cytosolic-enriched fraction. Additionally, B12 but not B14 overexpression increased PDI relocalization in non-stressed cells.Conclusions and general significance: Our findings reveal that B12/B14 regulation involves thiol redox processes that may impact on their stability and possibly on physiological effects. Furthermore, we provide novel evidence that these proteins are involved in UPR-induced ER protein reflux.
Palavras-chave
DNAJB12, DNAJB14, Endoplasmic reticulum stress, ER protein reflux
Referências
  1. Afshar N, 2005, MOL CELL BIOL, V25, P8844, DOI 10.1128/MCB.25.20.8844-8853.2005
  2. Capitani M, 2009, FEBS LETT, V583, P3863, DOI 10.1016/j.febslet.2009.10.053
  3. Cheng F, 2023, EMBO REP, V24, DOI 10.15252/embr.202256439
  4. Das AK, 1998, EMBO J, V17, P1192, DOI 10.1093/emboj/17.5.1192
  5. Ellgaard L, 2003, NAT REV MOL CELL BIO, V4, P181, DOI 10.1038/nrm1052
  6. Goodwin EC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094322
  7. Goodwin EC, 2011, MBIO, V2, DOI 10.1128/mBio.00101-11
  8. Grove DE, 2011, MOL BIOL CELL, V22, P301, DOI 10.1091/mbc.E10-09-0760
  9. Gupta V, 2014, BBA-GEN SUBJECTS, V1840, P847, DOI 10.1016/j.bbagen.2013.05.040
  10. Hartl FU, 2009, NAT STRUCT MOL BIOL, V16, P574, DOI 10.1038/nsmb.1591
  11. He LH, 2021, MOL BIOL CELL, V32, P538, DOI 10.1091/mbc.E20-11-0688
  12. Houck SA, 2014, MOL CELL, V54, P166, DOI 10.1016/j.molcel.2014.02.025
  13. Igbaria A, 2019, P NATL ACAD SCI USA, V116, P11291, DOI 10.1073/pnas.1904516116
  14. Jumper J, 2021, NATURE, V596, P583, DOI 10.1038/s41586-021-03819-2
  15. Kampinga HH, 2010, NAT REV MOL CELL BIO, V11, P579, DOI 10.1038/nrm2941
  16. Lajoie P, 2020, TRAFFIC, V21, P419, DOI 10.1111/tra.12729
  17. Li K, 2017, MOL CELL, V65, P52, DOI 10.1016/j.molcel.2016.10.027
  18. Liang QF, 2022, MOL PLANT PATHOL, V23, P805, DOI 10.1111/mpp.13152
  19. Qiu XB, 2006, CELL MOL LIFE SCI, V63, P2560, DOI 10.1007/s00018-006-6192-6
  20. Ramming T, 2014, FREE RADICAL BIO MED, V70, P106, DOI 10.1016/j.freeradbiomed.2014.01.018
  21. Ravindran MS, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15496
  22. Rosenzweig R, 2019, NAT REV MOL CELL BIO, V20, P665, DOI 10.1038/s41580-019-0133-3
  23. Rozales K, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-27982-w
  24. Rubio C, 2011, J CELL BIOL, V193, P171, DOI 10.1083/jcb.201007077
  25. Sayers EW, 2022, NUCLEIC ACIDS RES, V50, pD20, DOI 10.1093/nar/gkab1112
  26. Shim SM, 2018, SCI SIGNAL, V11, DOI 10.1126/scisignal.aan0630
  27. Sicari D, 2021, EMBO REP, V22, DOI 10.15252/embr.202051412
  28. Sicari D, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8111347
  29. Sobierajska K, 2014, J BIOL CHEM, V289, P5758, DOI 10.1074/jbc.M113.479477
  30. Sopha P, 2017, J BIOL CHEM, V292, P11792, DOI 10.1074/jbc.M117.785113
  31. Sopha P, 2012, CELL STRUCT FUNCT, V37, P177, DOI 10.1247/csf.12017
  32. Svoboda LK, 2012, CIRC RES, V111, P842, DOI 10.1161/CIRCRESAHA.111.263525
  33. Tamura K, 2021, MOL BIOL EVOL, V38, P3022, DOI 10.1093/molbev/msab120
  34. Tanaka LY, 2020, ANTIOXID REDOX SIGN, V33, P280, DOI 10.1089/ars.2019.8012
  35. THOMPSON JD, 1994, NUCLEIC ACIDS RES, V22, P4673, DOI 10.1093/nar/22.22.4673
  36. Varadi M, 2022, NUCLEIC ACIDS RES, V50, pD439, DOI 10.1093/nar/gkab1061
  37. Walczak CP, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1004007
  38. Walker KA, 2023, SCI TRANSL MED, V15, DOI 10.1126/scitranslmed.adf5681
  39. Walsh P, 2004, EMBO REP, V5, P567, DOI 10.1038/sj.embor.7400172
  40. Xu Y, 2012, CELL REP, V2, P1633, DOI 10.1016/j.celrep.2012.11.010
  41. Yamamoto Y, 2010, CELL STRUCT FUNCT, V35, P107, DOI 10.1247/csf.10023