The influence of landscape structure on the dispersal pattern of yellow fever virus in the state of Sao Paulo

Carregando...
Imagem de Miniatura
Citações na Scopus
9
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
MEDERIROS-SOUSA, Antonio Ralph
LOPORTA, Gabriel Zorello
MUCCI, Luis Filipe
PRIST, Paula Ribeiro
MARRELLI, Mauro Toledo
Citação
ACTA TROPICA, v.228, article ID 106333, 9p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Man-made changes to the landscape play a crucial role in altering the epidemiologic patterns of infectious diseases, mainly as a result of pathogen spillover. Sylvatic yellow fever is ideally suited to modeling of this phenomenon as the risk of transmission of the disease as well as its circulation and dispersal are associated with forest fragmentation. In this study we investigated the temporal dispersal pattern of yellow fever virus (YFV) by means of confirmed cases of epizootics in non-human primates in municipalities in the state of Sao Paulo where there was no recommendation for vaccination in 2017. We analyzed the resistance to dispersal associated with different classes of land use and the geographic distances between the different locations where epizootics were recorded. The model that best explained the temporal dispersal pattern of YFV in the study area indicated that this was influenced by the geographic distance between collection locations and by the permeability of the forest edges (150 m) at the interface with the following core areas: Water, Agricultural, Non-Forest Formation and Forestry. Water, Agricultural, Urban and Forest core areas and the interfaces between the latter two formed important barriers to circulation of the virus. These findings indicate that fragmentation of vegetation tends to decrease the time taken for pathogens to spread, while conservation of forest areas has the opposite effect.
Palavras-chave
Sylvatic yellow fever, Haemagogus leucocelaenus, Forest edge, Land use
Referências
  1. Abreu F.V.S., 2019, COMBINATION SURVEILL, DOI [10.1590/0074-02760190076, DOI 10.1590/0074-02760190076]
  2. Ames GM, 2011, P ROY SOC B-BIOL SCI, V278, P3544, DOI 10.1098/rspb.2011.0290
  3. Anantharaman R., 2020, P JULIACON C, V1, P58, DOI 10.21105/jcon.00058
  4. Angelo J.A., 2017, ANALISES INDICADORES, V12, P1
  5. Bates D, 2013, J STAT SOFTW, V52, P1, DOI 10.18637/jss.v052.i05
  6. Bicca-Marques JC, 2020, AM J PRIMATOL, V82, DOI 10.1002/ajp.23089
  7. Bolker B, 2017, BBMLE TOOLS GEN MAXI
  8. Buregyeya E, 2020, J EPIDEMIOL GLOB HEA, V10, P250, DOI 10.2991/jegh.k.200825.001
  9. Burnham K.P., 2002, MODEL SELECTION MULT, V2nd
  10. Cardoso JD, 2010, EMERG INFECT DIS, V16, P1918, DOI 10.3201/eid1612.100608
  11. Carroll D, 2018, B WORLD HEALTH ORGAN, V96, P292, DOI 10.2471/BLT.17.205005
  12. Castro G.A., 2010, EPIDEMIOL SERV SAUDE, V19, P101, DOI [10.5123/S1679-49742010000200003., DOI 10.5123/S1679-49742010000200003]
  13. Chippaux JP, 2018, J VENOM ANIM TOXINS, V24, DOI 10.1186/s40409-018-0162-y
  14. Couto-Lima D, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-05186-3
  15. Cunha MS, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-72794-x
  16. Vasconcelos PFD, 2010, REV SAUDE PUBL, V44, P1144, DOI 10.1590/S0034-89102010005000046
  17. Destoumieux-Garzon D, 2018, FRONT VET SCI, V5, DOI 10.3389/fvets.2018.00014
  18. Dobson AP, 2020, SCIENCE, V369, P379, DOI 10.1126/science.abc3189
  19. Faria NR, 2018, SCIENCE, V361, P894, DOI 10.1126/science.aat7115
  20. Garske T, 2014, PLOS MED, V11, DOI 10.1371/journal.pmed.1001638
  21. Gibb R, 2020, NATURE, V584, P398, DOI 10.1038/s41586-020-2562-8
  22. Guarner J, 2020, AM J CLIN PATHOL, V153, P420, DOI 10.1093/ajcp/aqaa029
  23. Haddad NM, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500052
  24. Hersperger AM, 2021, LANDSCAPE ECOL, V36, P2329, DOI 10.1007/s10980-021-01193-y
  25. Huestis DL, 2019, NATURE, V574, P404, DOI 10.1038/s41586-019-1622-4
  26. IBGE, 2021, I BRAS GEOGR EST CID
  27. IBGE, 2016, I BRAS GEOGR EST CID
  28. Ilacqua RC, 2021, J ENVIRON PUBLIC HEA, V2021, DOI 10.1155/2021/8230789
  29. Johnson CK, 2020, P ROY SOC B-BIOL SCI, V287, DOI 10.1098/rspb.2019.2736
  30. Joly C.A., 2014, TANSLEY REV EXPERIEN, P459
  31. Jones KE, 2008, NATURE, V451, P990, DOI 10.1038/nature06536
  32. Kuznetsova A, 2017, J STAT SOFTW, V82, P1, DOI 10.18637/jss.v082.i13
  33. Lira-Vieira AR, 2013, REV SOC BRAS MED TRO, V46, P566, DOI 10.1590/0037-8682-0136-2013
  34. Lopes J, 1997, REV SAUDE PUBL, V31, P370, DOI 10.1590/S0034-89101997000400006
  35. MapBiomas, 2020, PROJ MAOB COL 50 SER
  36. Martinez-Lopez B, 2009, TRANSBOUND EMERG DIS, V56, P109, DOI 10.1111/j.1865-1682.2009.01073.x
  37. Mayer SV, 2017, ACTA TROP, V166, P155, DOI 10.1016/j.actatropica.2016.11.020
  38. Mbora DNM, 2009, J ANIM ECOL, V78, P210, DOI 10.1111/j.1365-2656.2008.01481.x
  39. Medeiros-Sousa AR, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-18208-x
  40. Melliger RL, 2018, PLOS ONE, V13, DOI [10.1371/journal.pone.e0199245, 10.1371/journal.pone.0199245]
  41. Monath TP, 2015, J CLIN VIROL, V64, P160, DOI 10.1016/j.jcv.2014.08.030
  42. MONTAGNER FRG, 2018, J BIOL UDAYANA, V78, P233, DOI 10.1590/1519-6984.04416
  43. Moreno ES, 2011, REV SOC BRAS MED TRO, V44, P290, DOI 10.1590/S0037-86822011005000041
  44. Morse SS, 2012, LANCET, V380, P1956, DOI 10.1016/S0140-6736(12)61684-5
  45. MS, 2020, B EPIDEMIOLOGICO ARB
  46. MS, 2021, B EPIDEMIOLOGICO
  47. MS, 2019, MIN SAUD SECR VIG SA
  48. Opsahl T, 2010, SOC NETWORKS, V32, P245, DOI 10.1016/j.socnet.2010.03.006
  49. OSTFELD RS, 2000, BIODIVERSITY DIS RIS, V14, P722
  50. Pandey A, 2014, SCIENCE, V346, P991, DOI 10.1126/science.1260612
  51. Perez-Espona S, 2008, MOL ECOL, V17, P981, DOI 10.1111/j.1365-294X.2007.03629.x
  52. Plowright RK, 2021, LANCET PLANET HEALTH, V5, pE237, DOI 10.1016/S2542-5196(21)00031-0
  53. Possas C, 2018, MEM I OSWALDO CRUZ, V113, DOI 10.1590/0074-02760180278
  54. Prist PR, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163459
  55. Rezende CL, 2018, PERSPECT ECOL CONSER, V16, P208, DOI 10.1016/j.pecon.2018.10.002
  56. Prist PR, 2022, J APPL ECOL, V59, P4, DOI 10.1111/1365-2664.14031
  57. de Abreu FVS, 2020, VIRUSES-BASEL, V12, DOI 10.3390/v12040364
  58. de Abreu FVS, 2019, EMERG MICROBES INFEC, V8, P218, DOI 10.1080/22221751.2019.1568180
  59. Schmidt KA, 2001, ECOLOGY, V82, P609, DOI 10.1890/0012-9658(2001)082[0609:BATDEI]2.0.CO;2
  60. Segura M.N., 2007, ATLAS CULICIDAE BRAZ
  61. Silva M.A.N., 1999, BRASIL REV BRAS Z S1, V16, P257, DOI 10.1590/S0101-81751999000500018
  62. SOSMA, 2020, QUAL AR COB MAT ATL
  63. Spear SF, 2010, MOL ECOL, V19, P3576, DOI 10.1111/j.1365-294X.2010.04657.x
  64. Verdonschot PFM, 2014, LIMNOLOGICA, V45, P69, DOI 10.1016/j.limno.2013.11.002
  65. Wilk-da-Silva R, 2020, ACTA TROP, V204, DOI 10.1016/j.actatropica.2020.105385
  66. Young KI, 2021, ECOSPHERE, V12, DOI 10.1002/ecs2.3463
  67. Zittra C, 2017, PARASITE VECTOR, V10, DOI 10.1186/s13071-017-2140-6
  68. Zohdy S, 2019, TRENDS PARASITOL, V35, P399, DOI 10.1016/j.pt.2019.03.010