Clinical Outcomes in Patients with Spinal Muscular Atrophy Type 1 Treated with Nusinersen

Nenhuma Miniatura disponível
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
IOS PRESS
Citação
JOURNAL OF NEUROMUSCULAR DISEASES, v.8, n.2, p.217-224, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Spinal muscular atrophy type 1 (SMA1) is a motor neuron disease associated with progressive muscle weakness, ventilatory failure, and reduced survival. Objective: To report the evaluation of the nusinersen, an antisense oligonucleotide, on the motor function of SMA1. Methods: This was a longitudinal and observational study to assess the outcomes of nusinersen therapy in SMA1 patients using the HINE-2 and CHOP-INTEND scales. Results: Twenty-one SMA1 patients (52.4% males) were included; the mean age at first symptoms was 2.7 months (SD = +/- 1.5), and the mean disease duration at first dose was 34.1 (SD = +/- 36.0) months. During posttreatment, the mean gain on the CHOP-INTEND was 4.9, 5.9, 6.6, and 14 points after 6, 12, 18, and 24 months, respectively. Starting medication with a disease duration of less than 12 months and/or without invasive ventilation were predictors of response on CHOP-INTEND. Of the patients, 28.6% acquired a motor milestone or gained at least three points on the HINE-2. The daily time for ventilatory support was reduced after treatment in most of the patients with noninvasive ventilation at baseline. No change in the daytime use of ventilation was observed in most of the patients using invasive ventilation at baseline. Conclusions: Nusinersen produces improvements in motor and respiratory functions, even in long-term SMA1 patients. However, patients under invasive ventilation at the beginning of the treatment experience little benefit.
Palavras-chave
Spinal muscular atrophy, SMN1, nusinersen, antisense oligonucleotide, motor neuron disease
Referências
  1. Aragon-Gawinska K, 2020, DEV MED CHILD NEUROL, V62, P310, DOI 10.1111/dmcn.14412
  2. Aragon-Gawinska K, 2018, NEUROLOGY, V91, pE1312, DOI 10.1212/WNL.0000000000006281
  3. Audic F, 2020, ORPHANET J RARE DIS, V15, DOI 10.1186/s13023-020-01414-8
  4. De Sanctis R, 2018, NEUROMUSCULAR DISORD, V28, P24, DOI 10.1016/j.nmd.2017.09.015
  5. Farrar MA, 2018, J NEUROL NEUROSUR PS, V89, P937, DOI 10.1136/jnnp-2017-317412
  6. Finkel RS, 2017, NEW ENGL J MED, V377, P1723, DOI 10.1056/NEJMoa1702752
  7. Finkel RS, 2014, NEUROLOGY, V83, P810, DOI 10.1212/WNL.0000000000000741
  8. HAUSMANOWAPETRUSEWICZ I, 1984, J MED GENET, V21, P447, DOI 10.1136/jmg.21.6.447
  9. Kolb SJ, 2017, ANN NEUROL, V82, P883, DOI 10.1002/ana.25101
  10. LEFEBVRE S, 1995, CELL, V80, P155, DOI 10.1016/0092-8674(95)90460-3
  11. LoMauro A, 2019, AM J RESP CRIT CARE, V200, P1547, DOI 10.1164/rccm.201906-1175LE
  12. Mendonca RD, 2020, NEUROL-GENET, V6, DOI 10.1212/NXG.0000000000000505
  13. Mercuri E, 2018, NEW ENGL J MED, V378, P625, DOI 10.1056/NEJMoa1710504
  14. Mercuri E, 2020, ORPHANET J RARE DIS, V15, DOI 10.1186/s13023-020-01356-1
  15. Messina S, 2017, NEUROMUSCULAR DISORD, V27, P1084, DOI 10.1016/j.nmd.2017.09.006
  16. MUNSAT TL, 1992, NEUROMUSCULAR DISORD, V2, P423, DOI 10.1016/S0960-8966(06)80015-5
  17. Oprea GE, 2008, SCIENCE, V320, P524, DOI 10.1126/science.1155085
  18. Pane M, 2019, ANN NEUROL, V86, P443, DOI 10.1002/ana.25533
  19. Pane M, 2018, NEUROMUSCULAR DISORD, V28, P582, DOI 10.1016/j.nmd.2018.05.010
  20. Pechmann Astrid, 2018, J Neuromuscul Dis, V5, P135, DOI 10.3233/JND-180315
  21. Reed UC, 2018, ARQ NEURO-PSIQUIAT, V76, P265, DOI [10.1590/0004-282x20180011, 10.1590/0004-282X20180011]
  22. Sansone VA, 2020, J PEDIATR-US, V219, P223, DOI 10.1016/j.jpeds.2019.12.047
  23. Sugarman EA, 2012, EUR J HUM GENET, V20, P27, DOI 10.1038/ejhg.2011.134
  24. Wirth B, 2006, HUM GENET, V119, P422, DOI 10.1007/s00439-006-0156-7