Avocado (Persea americana) pulp improves cardiovascular and autonomic recovery following submaximal running: a crossover, randomized, double-blind and placebo-controlled trial

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
SOUSA, Fernando H.
VALENTI, Vitor E.
PEREIRA, Leticia C.
BUENO, Rafaela R.
PRATES, Sara
AKIMOTO, Amanda N.
KAVIANI, Mojtaba
GARNER, David M.
ABREU, Luiz Carlos de
Citação
SCIENTIFIC REPORTS, v.10, n.1, article ID 10703, 12p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Previous studies have demonstrated that regular avocado consumption presents advantageous effects on cardiovascular system. However, little attention has been paid to the use of avocado as a dietary supplement, in particular, for individuals involved in physical exercise training. Therefore, this study aims to evaluate the effect of acute avocado pulp intake on cardiovascular and autonomic recovery subsequent to moderate exercise. Using a crossover, randomized, double-blind and placebo-controlled trial design, 16 healthy female adults underwent two protocols: Avocado pulp (600 mg in capsule) and placebo (600 mg starch in capsule). After the ingestion of Avocado pulp or placebo, the subjects were seated for 60 min at rest, followed by running on a treadmill at a submaximal level and then remained seated for 60 min during recovery from the exercise. Heart rate (HR), heart rate variability (HRV) [rMSSD, SD1, HF (ms(2))] and skin conductance were evaluated before and during exercise, as well as during recovery. HR, systolic blood pressure, HRV and skin conductance recovered faster when subjects were given avocado pulp prior to exercise. In conclusion, avocado pulp improved cardiovascular and autonomic recovery after exercise, suggesting a reduced risk of cardiovascular events after exertion. The current results support the beneficial effects of ingestion of avocado prior to submaximal treadmill running.
Palavras-chave
Referências
  1. Asgari S, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-42809-3
  2. Bai XP, 2009, AM J PHYSIOL-HEART C, V297, pH765, DOI 10.1152/ajpheart.01283.2008
  3. Behrens M, 2015, SCI REP-UK, V5, DOI 10.1038/srep10209
  4. Billman GE, 2013, FRONT PHYSIOL, V4, DOI [10.3389/fphys.2013.00026, 10.3389/fphys.2013.00222]
  5. Camm AJ, 1996, EUR HEART J, V17, P354
  6. Belli JFC, 2011, ARQ BRAS CARDIOL, V97, P171, DOI 10.1590/S0066-782X2011005000072
  7. Carvajal-Zarrabal O, 2014, DIS MARKERS, V2014, DOI 10.1155/2014/386425
  8. Cole CR, 1999, NEW ENGL J MED, V341, P1351, DOI 10.1056/NEJM199910283411804
  9. Colombari E, 2001, HYPERTENSION, V38, P549, DOI 10.1161/01.HYP.38.3.549
  10. Cuschieri S, 2019, SAUDI J ANAESTH, V13, P27, DOI 10.4103/sja.SJA_559_18
  11. Vidigal GAD, 2016, COMPLEMENT THER CLIN, V23, P14, DOI 10.1016/j.ctcp.2015.11.005
  12. Dzeufiet PDD, 2014, BMC COMPLEM ALTERN M, V14, DOI 10.1186/1472-6882-14-507
  13. Fadel PJ, 2015, SCAND J MED SCI SPOR, V25, P74, DOI 10.1111/sms.12600
  14. Ferreira C, 2010, CLINICS, V65, P723, DOI 10.1590/S1807-59322010000700012
  15. Ferreira LL, 2015, NOISE HEALTH, V17, P108, DOI 10.4103/1463-1741.153402
  16. Fontes AMGG, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-34246-5
  17. Gomes RL, 2018, SCI SPORT, V33, P221, DOI 10.1016/j.scispo.2018.01.002
  18. Gonzaga LA, 2019, MEDICINA-LITHUANIA, V55, DOI 10.3390/medicina55050196
  19. Gonzaga LA, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14540-4
  20. Rodriguez-Sanchez DG, 2015, FOOD FUNCT, V6, P193, DOI 10.1039/c4fo00610k
  21. Hallal PC, 2010, J PHYS ACT HEALTH, V7, P402, DOI 10.1123/jpah.7.3.402
  22. Harms JE, 2017, J PHYSIOL-LONDON, V595, P4365, DOI 10.1113/JP273816
  23. Heathers JAJ, 2012, EXP PHYSIOL, V97, P556, DOI 10.1113/expphysiol.2011.063867
  24. Hinrichs R, 2017, DEPRESS ANXIETY, V34, P502, DOI 10.1002/da.22610
  25. Jouven X, 2005, NEW ENGL J MED, V352, P1951, DOI 10.1056/NEJMoa043012
  26. Lohman TiG, 1988, ANTROPOMETRIC STANDA
  27. Machado FA, 2011, ARQ BRAS CARDIOL, V97, P136, DOI 10.1590/S0066-782X2011005000078
  28. Mahmassani HA, 2018, AM J CLIN NUTR, V107, P523, DOI 10.1093/ajcn/nqx078
  29. Marquez-Ramirez CA, 2018, NUTRITION, V54, P60, DOI 10.1016/j.nut.2018.02.024
  30. Michael S, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00301
  31. Moreno IL, 2013, J INT SOC SPORT NUTR, V10, DOI 10.1186/1550-2783-10-2
  32. Nishime EO, 2000, JAMA-J AM MED ASSOC, V284, P1392, DOI 10.1001/jama.284.11.1392
  33. Niskanen JP, 2004, COMPUT METH PROG BIO, V76, P73, DOI 10.1016/j.cmpb.2004.03.004
  34. Null G, 2017, J EVID-BASED INTEGR, V22, P68, DOI 10.1177/2156587216637539
  35. Ojewole J A O, 2007, Cardiovasc J Afr, V18, P69
  36. Park E, 2018, NUTRIENTS, V10, DOI 10.3390/nu10091287
  37. Pecanha T, 2014, CLIN PHYSIOL FUNCT I, V34, P327, DOI 10.1111/cpf.12102
  38. Porta A, 2001, IEEE T BIO-MED ENG, V48, P1282, DOI 10.1109/10.959324
  39. Quintana DS, 2017, PSYCHOPHYSIOLOGY, V54, P344, DOI 10.1111/psyp.12798
  40. Rang H. P., 2005, RANG DALES PHARM
  41. Rodriguez-Sanchez D, 2013, J CHROMATOGR B, V942, P37, DOI 10.1016/j.jchromb.2013.10.013
  42. Rossi DM, 2011, CLINICS, V66, P1615, DOI 10.1590/S1807-59322011000900019
  43. Rzewnicki R, 2003, PUBLIC HEALTH NUTR, V6, P299, DOI 10.1079/PHN2002427
  44. Segovia FJ, 2018, MOLECULES, V23, DOI 10.3390/molecules23102421
  45. Senador D, 2017, AM J PHYSIOL-REG I, V313, pR29, DOI 10.1152/ajpregu.00515.2016
  46. Singh RB, 2003, INT J CARDIOL, V87, P9, DOI 10.1016/S0167-5273(02)00308-X
  47. Valenti VE, 2010, CLINICS, V65, P1339, DOI 10.1590/S1807-59322010001200018
  48. Wang L, 2015, J AM HEART ASSOC, V4, DOI 10.1161/JAHA.114.001355
  49. Zhao CN, 2017, NUTRIENTS, V9, DOI 10.3390/nu9060598