Association of early cleavage, morula compaction and blastocysts ploidy of IVF embryos cultured in a time-lapse system and biopsied for genetic test for aneuploidy

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
MARTIN, H. De
BONETTI, T. C. S.
GOMES, A. P.
FUJII, M. G.
Citação
SCIENTIFIC REPORTS, v.14, n.1, article ID 739, 9p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
IVF embryos have historically been evaluated by morphological characteristics. The time-lapse system (TLS) has become a promising tool, providing an uninterrupted evaluation of morphological and dynamic parameters of embryo development. Furthermore, TLS sheds light on unknown phenomena such as direct cleavage and incomplete morula compaction. We retrospectively analyzed the morphology (Gardner Score) and morphokinetics (KIDScore) of 835 blastocysts grown in a TLS incubator (Embryoscope+), which were biopsied for preimplantation genetic testing for aneuploidy (PGT-A). Only the embryos that reached the blastocyst stage were included in this study and time-lapse videos were retrospectively reanalysed. According to the pattern of initial cleavages and morula compaction, the embryos were classified as: normal (NC) or abnormal (AC) cleavage, and fully (FCM) or partially compacted (PCM) morulae. No difference was found in early cleavage types or morula compaction patterns between female age groups (< 38, 38-40 and > 40 yo). Most of NC embryos resulted in FCM (congruent to 60%), while no embryos with AC resulted in FCM. Aneuploidy rate of AC-PCM group did not differ from that of NC-FCM group in women < 38 yo, but aneuploidy was significantly higher in AC-PCM compared to NC-FCM of women > 40 yo. However, the quality of embryos was lower in AC-PCM blastocysts in women of all age ranges. Morphological and morphokinetic scores declined with increasing age, in the NC-PCM and AC-PCM groups, compared to the NC-FCM. Similar aneuploidy rates among NC-FCM and AC-PCM groups support the hypothesis that PCM in anomalous-cleaved embryos can represent a potential correction mechanism, even though lower morphological/morphokinetic scores are seen on AC-PCM. Therefore, both morphological and morphokinetic assessment should consider these embryonic development phenomena.
Palavras-chave
Referências
  1. Alfarawati S, 2011, FERTIL STERIL, V95, P520, DOI 10.1016/j.fertnstert.2010.04.003
  2. Apter S, 2020, HUM REPROD OPEN, V2020, DOI 10.1093/hropen/hoaa008
  3. Armstrong S, 2019, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011320.pub4
  4. Basile N, 2015, HUM REPROD, V30, P276, DOI 10.1093/humrep/deu331
  5. Bhide P, 2020, TRIALS, V21, DOI 10.1186/s13063-020-04537-2
  6. Bhide P, 2019, BJOG-INT J OBSTET GY, V126, P288, DOI 10.1111/1471-0528.15158
  7. Brooks KE, 2022, DEVELOPMENT, V149, DOI 10.1242/dev.198341
  8. Campbell A, 2013, REPROD BIOMED ONLINE, V26, P477, DOI 10.1016/j.rbmo.2013.02.006
  9. Capalbo A, 2014, HUM REPROD, V29, P1173, DOI 10.1093/humrep/deu033
  10. Cavazza T, 2021, CELL, V184, P2860, DOI 10.1016/j.cell.2021.04.013
  11. Chavez SL, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms2249
  12. Ciray HN, 2014, HUM REPROD, V29, P2650, DOI 10.1093/humrep/deu278
  13. Coates A, 2017, FERTIL STERIL, V107, P723, DOI [10.1016/.fertnstert.2016.12.022, 10.1016/j.fertnstert.2016.12.022]
  14. Conaghan J, 2013, FERTIL STERIL, V100, P412, DOI 10.1016/j.fertnstert.2013.04.021
  15. Coticchio G, 2021, HUM REPROD, V36, P918, DOI 10.1093/humrep/deab011
  16. Coticchio G, 2019, HUM REPROD UPDATE, V25, P422, DOI 10.1093/humupd/dmz008
  17. Currie CE, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-34294-6
  18. Daughtry BL, 2016, CELL TISSUE RES, V363, P201, DOI 10.1007/s00441-015-2305-6
  19. Del Gallego R, 2019, BIOL REPROD, V101, P1146, DOI 10.1093/biolre/ioz035
  20. Desai N, 2018, FERTIL STERIL, V109, P665, DOI 10.1016/j.fertnstert.2017.12.025
  21. Desai N, 2014, REPROD BIOL ENDOCRIN, V12, DOI 10.1186/1477-7827-12-54
  22. Ebner T, 2003, HUM REPROD UPDATE, V9, P251, DOI 10.1093/humupd/dmg021
  23. Fragouli E, 2014, MOL HUM REPROD, V20, P117, DOI 10.1093/molehr/gat073
  24. Gardner DK, 2000, FERTIL STERIL, V73, P1155, DOI 10.1016/S0015-0282(00)00518-5
  25. Gleicher N, 2017, REPROD BIOL ENDOCRIN, V15, DOI 10.1186/s12958-017-0251-8
  26. Gruhn JR, 2019, SCIENCE, V365, P1466, DOI 10.1126/science.aav7321
  27. Harada Y, 2020, REPROD MED BIOL, V19, P58, DOI 10.1002/rmb2.12302
  28. Herrero J, 2013, FERTIL STERIL, V99, P1030, DOI 10.1016/j.fertnstert.2013.01.089
  29. Kalatova B, 2015, ACTA HISTOCHEM, V117, P111, DOI 10.1016/j.acthis.2014.11.009
  30. Kirkegaard K, 2014, REPROD BIOMED ONLINE, V29, P156, DOI 10.1016/j.rbmo.2014.04.011
  31. Lagalla C, 2017, REPROD BIOMED ONLINE, V34, P137, DOI 10.1016/j.rbmo.2016.11.008
  32. Lagalla C, 2020, REPROD BIOMED ONLINE, V40, P347, DOI 10.1016/j.rbmo.2019.11.011
  33. Mayer RB, 2018, FERTIL STERIL, V109, P1025, DOI 10.1016/j.fertnstert.2018.02.131
  34. McCollin A, 2020, EUR J MED GENET, V63, DOI 10.1016/j.ejmg.2019.04.008
  35. McCoy RC, 2018, HUM MOL GENET, V27, P2573, DOI 10.1093/hmg/ddy147
  36. Meriano J, 2004, REPROD BIOMED ONLINE, V9, P511, DOI 10.1016/S1472-6483(10)61635-5
  37. Meseguer M, 2011, HUM REPROD, V26, P2658, DOI 10.1093/humrep/der256
  38. Milewski R, 2016, GINEKOL POL, V87, P677, DOI 10.5603/GP.2016.0067
  39. Milewski R, 2015, J ASSIST REPROD GEN, V32, P571, DOI 10.1007/s10815-015-0440-3
  40. Motato Y, 2016, FERTIL STERIL, V105, P376, DOI 10.1016/j.fertnstert.2015.11.001
  41. Munné S, 2019, FERTIL STERIL, V112, P1071, DOI 10.1016/j.fertnstert.2019.07.1346
  42. Ottolini CS, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09693-1
  43. Ozbek IY, 2021, REPROD BIOMED ONLINE, V42, P892, DOI 10.1016/j.rbmo.2021.02.005
  44. Palmerola KL, 2022, CELL, V185, P2988, DOI 10.1016/j.cell.2022.06.028
  45. Rienzi L, 2019, FERTIL STERIL, V112, P1080, DOI 10.1016/j.fertnstert.2019.07.1322
  46. Rosenwaks Z, 2018, FERTIL STERIL, V110, P353, DOI 10.1016/j.fertnstert.2018.06.002
  47. Rubio C, 2021, FERTIL STERIL, V115, P841, DOI 10.1016/j.fertnstert.2021.02.045
  48. Rubio I, 2012, FERTIL STERIL, V98, P1458, DOI 10.1016/j.fertnstert.2012.07.1135
  49. Scott L, 2007, HUM REPROD, V22, P230, DOI 10.1093/humrep/del358
  50. Scott RT, 2013, FERTIL STERIL, V100, P697, DOI 10.1016/j.fertnstert.2013.04.035
  51. Simon AL, 2018, FERTIL STERIL, V110, P113, DOI 10.1016/j.fertnstert.2018.03.026
  52. Vanneste E, 2009, NAT MED, V15, P577, DOI 10.1038/nm.1924
  53. Yang ST, 2015, REPROD BIOMED ONLINE, V30, P625, DOI 10.1016/j.rbmo.2015.02.008
  54. Yang ZH, 2012, MOL CYTOGENET, V5, DOI 10.1186/1755-8166-5-24
  55. Zaninovic N, 2017, FERTIL STERIL, V108, P722, DOI 10.1016/j.fertnstert.2017.10.002
  56. Zhan QS, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0166398