Effect of exercise intensity after a single session of isocaloric aerobic exercise on the heart rate recovery

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorMARIN, T.C.
dc.contributor.authorPEçANHA, T.
dc.contributor.authorPIRES, F.O.
dc.contributor.authorCAVINATO, C.
dc.contributor.authorCASTRO, V.M. de
dc.contributor.authorCARMO, E.C. Do
dc.contributor.authorBRITO, L.C. de
dc.date.accessioned2021-04-29T12:56:33Z
dc.date.available2021-04-29T12:56:33Z
dc.date.issued2020
dc.description.abstractThe aim of this study was to compare heart rate recovery (HRR) and its association with energy systems of contributionafter isocaloric exercise sessions conducted at low (LI) and moderate (MI) intensity. Nine subjects randomly underwent two isocaloric exercise sessions, one conducted at LI (10% < velocity from anaerobic threshold) and other at MI (10% < velocity from respiratory compensation point). Blood lactate was measured pre-and post-exercise and rate perceived effort was assessed immediately after the exercise; during the exercise was estimated the contribution of oxidative, glycolytic and ATP-PCr systems. HRR30s, HRR60s (percentage of HR reduction after 30s and 60s of recovery), T30 (short-term time constant of HRR) and rMSSD30s (square root of the mean of the sum of the squares of differences between adjacent R-R intervals of subsequent 30s segments) were measured as parasympathetic reactivation markers. HRR300s (percentage of HR reduction after 300s of recovery) and HRRt (long-term time constant of the first order exponential fitting of HRR) were measured as sympathetic withdrawal markers. Paired t-test and two-way ANOVA were employed to compare LI and MI sessions and Pearson or Spearman correlations were used to analyze the association between energy contribution and HRR indexes, P<0.05. LI and MI did not present differences in HRR indexes. Regarding energy contribution, HRR30s was positively associated with oxidative contribution and negatively associated to ATP-PCr contribution, while HRR60s was negatively associated with glycolitc contribution, and T30 was negatively associated with oxidative contribution and positively associated with ATP-PCr contribution. No associations were observed after MI.Therefore, in recreationally active men, the caloric expenditure seems to play a role on HRR indexes after low and moderate intensity of a short matched-caloric expenditure aerobic exercise session,and parasympathetic reactivation is associated with greater oxidative, but lower glycolitic and ATP-PCr energy systems of contribution. © JPES.eng
dc.description.indexScopuseng
dc.identifier.citationJOURNAL OF PHYSICAL EDUCATION AND SPORT, v.20, p.2851-2858, 2020
dc.identifier.doi10.7752/jpes.2020.s5387
dc.identifier.issn2247-8051
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/40221
dc.language.isoeng
dc.publisherEDITURA UNIVERSITATII DIN PITESTIeng
dc.relation.ispartofJournal of Physical Education and Sport
dc.rightsopenAccesseng
dc.rights.holderCopyright EDITURA UNIVERSITATII DIN PITESTIeng
dc.subjectEnergy systemseng
dc.subjectParasympathetic reactivationeng
dc.subjectPhysical activityeng
dc.subjectSympathetic withdrawaleng
dc.titleEffect of exercise intensity after a single session of isocaloric aerobic exercise on the heart rate recoveryeng
dc.typearticleeng
dc.type.categoryeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalMARIN, T.C.:University of São Paulo, School of Arts, Sciences and Humanities, São Paulo, SP, Brazil
hcfmusp.author.externalPIRES, F.O.:University of São Paulo, School of Arts, Sciences and Humanities, São Paulo, SP, Brazil
hcfmusp.author.externalCAVINATO, C.:Senac University Center, São Paulo, SP, Brazil
hcfmusp.author.externalCASTRO, V.M. de:Senac University Center, São Paulo, SP, Brazil
hcfmusp.author.externalCARMO, E.C. Do:Senac University Center, São Paulo, SP, Brazil
hcfmusp.author.externalBRITO, L.C. de:University of São Paulo, School of Arts, Sciences and Humanities, São Paulo, SP, Brazil
hcfmusp.citation.scopus2
hcfmusp.contributor.author-fmusphcTIAGO PECANHA DE OLIVEIRA
hcfmusp.description.articlenumber387
hcfmusp.description.beginpage2851
hcfmusp.description.endpage2858
hcfmusp.description.volume20
hcfmusp.origemSCOPUS
hcfmusp.origem.scopus2-s2.0-85098282135
hcfmusp.relation.referenceAlbert, C. M., Mittleman, M. A., Chae, C. U., Lee, I. M., Hennekens, C. H., Manson, J. E., Triggering of sudden death from cardiac causes by vigorous exertion (2000) The New England journal of medicine, 343 (19), pp. 1355-1361eng
hcfmusp.relation.referenceAl Haddad, H., Laursen, P. B., Chollet, D., Ahmaidi, S., Buchheit, M., Reliability of resting and postexercise heart rate measures (2011) International journal of sports medicine, 32 (8), pp. 598-605eng
hcfmusp.relation.referenceBartels, R., Prodel, E., Laterza, M. C., de Lima, J., Peçanha, T., Heart rate recovery fast-to-slow phase transition: Influence of physical fitness and exercise intensity (2018) Annals of noninvasive electrocardiology: the official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc, 23 (3), p. e12521eng
hcfmusp.relation.referenceBertuzzi, R. C., Franchini, E., Kokubun, E., Kiss, M. A., Energy system contributions in indoor rock climbing (2007) European journal of applied physiology, 101 (3), pp. 293-300eng
hcfmusp.relation.referenceBuchheit, M., Laursen, P. B., Ahmaidi, S., Parasympathetic reactivation after repeated sprint exercise. American journal of physiology (2007) Heart and circulatory physiology, 293 (1), pp. H133-H141eng
hcfmusp.relation.referenceBuchheit, M., Papelier, Y., Laursen, P. B., Ahmaidi, S., Noninvasive assessment of cardiac parasympathetic function: postexercise heart rate recovery or heart rate variability? American journal of physiology (2007) Heart and circulatory physiology, 293 (1), pp. H8-H10eng
hcfmusp.relation.referenceBuchheit, M., Laursen, P. B., Al Haddad, H., Ahmaidi, S., Exercise-induced plasma volume expansion and post-exercise parasympathetic reactivation (2009) European journal of applied physiology, 105 (3), pp. 471-481eng
hcfmusp.relation.referenceBuchheit, M., Monitoring training status with HR measures: do all roads lead to Rome? (2014) Frontiers in physiology, 5, p. 73eng
hcfmusp.relation.referenceDaanen, H. A., Lamberts, R. P., Kallen, V. L., Jin, A., Van Meeteren, N. L., A systematic review on heart-rate recovery to monitor changes in training status in athletes (2012) International journal of sports physiology and performance, 7 (3), pp. 251-260eng
hcfmusp.relation.referenceDavis, J. A., Anaerobic threshold: review of the concept and directions for future research. Medicine and science in sports and exercise, 17(1), 6–21.Gastin P. B. (2001). Energy system interaction and relative contribution during maximal exercise (1985) Sports medicine (Auckland, N.Z.), (10), p. 725. , 31 –741eng
hcfmusp.relation.referenceGoldberger, J. J., Le, F. K., Lahiri, M., Kannankeril, P. J., Ng, J., Kadish, A. H., Assessment of parasympathetic reactivation after exercise. American journal of physiology (2006) Heart and circulatory physiology, 290 (6), pp. H2446-H2452eng
hcfmusp.relation.referenceHagberg, J. M., Hickson, R. C., Ehsani, A. A., Holloszy, J. O., Faster adjustment to and recovery from submaximal exercise in the trained state (1980) Journal of applied physiology: respiratory, environmental and exercise physiology, 48 (2), pp. 218-224eng
hcfmusp.relation.referenceIellamo, F., Volterrani, M., Di Gianfrancesco, A., Fossati, C., Casasco, M., The Effect of Exercise Training on Autonomic Cardiovascular Regulation: From Cardiac Patients to Athletes (2018) Currentsports medicine reports, 17 (12), pp. 473-479eng
hcfmusp.relation.referenceLopes-Silva, J. P., Silva Santos, J. F., Branco, B. H., Abad, C. C., Oliveira, L. F., Loturco, I., Franchini, E., Caffeine Ingestion Increases Estimated Glycolytic Metabolism during Taekwondo Combat Simulation but Does Not Improve Performance or Parasympathetic Reactivation (2015) PloS one, 10 (11), p. e0142078eng
hcfmusp.relation.referenceMann, T. N., Webster, C., Lamberts, R. P., Lambert, M. I., Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery (2014) European journal of applied physiology, 114 (9), pp. 1809-1820eng
hcfmusp.relation.referenceMatsuo, T., Saotome, K., Seino, S., Eto, M., Shimojo, N., Matsushita, A., Iemitsu, M., Mukai, C., Low-volume, high-intensity, aerobic interval exercise for sedentary adults: VO₂max, cardiac mass, and heart rate recovery (2014) European journal of applied physiology, 114 (9), pp. 1963-1972eng
hcfmusp.relation.referenceMcArdle, W.D., Katch, F.I., Katch, V.L., Treinamento para potênciaanaeróbica e aeróbica (2001) Fisiologia do Exercício: energia, nutrição e desempenho humano, pp. 470-512. , pag McArdle, W. D.eng
hcfmusp.relation.referenceKatch, F. I.eng
hcfmusp.relation.referenceKatch, L. Rio de Janeiro: Guanabara Koogan SAeng
hcfmusp.relation.referenceMcCrudden, M. C., Keir, D. A., Belfry, G. R., The effects of short work vs. longer work periods within intermittent exercise on V̇ o2p kinetics, muscle deoxygenation, and energy system contribution (2017) Journal of applied physiology, 122 (6), pp. 1435-1444. , (Bethesda, Md.: 1985)eng
hcfmusp.relation.referenceMendonca, G. V., Heffernan, K. S., Rossow, L., Guerra, M., Pereira, F. D., Fernhall, B., Sex differences in linear and nonlinear heart rate variability during early recovery from supramaximal exercise (2010) Applied physiology, nutrition, and metabolism = Physiologieappliquee, nutrition et metabolisme, 35 (4), pp. 439-446eng
hcfmusp.relation.referenceMendonca, G. V., Teodósio, C., Bruno, P. M., Sexual dimorphism in heart rate recovery from peak exercise (2017) European journal of applied physiology, 117 (7), pp. 1373-1381eng
hcfmusp.relation.referenceMurrell, C., Wilson, L., Cotter, J. D., Lucas, S., Ogoh, S., George, K., Ainslie, P. N., Alterations in autonomic function and cerebral hemodynamics to orthostatic challenge following a mountain marathon (2007) Journal of applied physiology, 103 (1), pp. 88-96. , (Bethesda, Md.: 1985)eng
hcfmusp.relation.referenceOzyener, F., Rossiter, H. B., Ward, S. A., Whipp, B. J., Influence of exercise intensity on the on-and off-transient kinetics of pulmonary oxygen uptake in humans (2001) The Journal of physiology, 533, pp. 891-902. , (Pt 3)eng
hcfmusp.relation.referencePearson, M. J., Smart, N. A., Exercise therapy and autonomic function in heart failure patients: a systematic review and meta-analysis (2018) Heart failure reviews, 23 (1), pp. 91-108eng
hcfmusp.relation.referencePeçanha, T., Bartels, R., Brito, L. C., Paula-Ribeiro, M., Oliveira, R. S., Goldberger, J. J., Methods of assessment of the post-exercise cardiac autonomic recovery: A methodological review (2017) Internationaljournalofcardiology, 227, pp. 795-802eng
hcfmusp.relation.referencePeçanha, T., de Brito, L. C., Fecchio, R. Y., de Sousa, P. N., da Silva Junior, N. D., de Abreu, A. P., da Silva, G. V., Forjaz, C. L., Metaboreflex activation delays heart rate recovery after aerobic exercise in never-treated hypertensive men (2016) The Journal of physiology, 594 (21), pp. 6211-6223eng
hcfmusp.relation.referencePeçanha, T., Prodel, E., Bartels, R., Nasario-Junior, O., Paula, R. B., Silva, L. P., Laterza, M. C., Lima, J. R., 24-h cardiac autonomic profile after exercise in sedentary subjects (2014) International journal of sports medicine, 35 (3), pp. 245-252eng
hcfmusp.relation.referencediPrampero, P. E., Ferretti, G., The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts (1999) Respiration physiology, 118 (2-3), pp. 103-115eng
hcfmusp.relation.referenceShephard, R. J., Cox, M. H., Simper, K., An analysis of ""Par-Q"" responses in an office population (1981) Canadian journal of public health = Revue canadienne de sante publique, 72 (1), pp. 37-40eng
hcfmusp.relation.referenceSkinner, J. S., McLellan, T. M., The transition from aerobic to anaerobic metabolism (1980) Research quarterly for exercise and sport, 51 (1), pp. 234-248eng
hcfmusp.relation.referenceStanley, J., Peake, J. M., Buchheit, M., Cardiac parasympathetic reactivation following exercise: implications for training prescription (2013) Sports medicine (Auckland, N.Z.), 43 (12), pp. 1259-1277eng
hcfmusp.relation.referenceUshijima, A., Fukuma, N., Kato, Y., Aisu, N., Mizuno, K., Sympathetic excitation during exercise as a cause of attenuated heart rate recovery in patients with myocardial infarction (2009) Journal of Nippon Medical School = Nippon IkaDaigakuzasshi, 76 (2), pp. 76-83eng
hcfmusp.relation.referenceWilson, M. G., Ellison, G. M., Cable, N. T., Basic science behind the cardiovascular benefits of exercise (2015) Heart (British Cardiac Society), 101 (10), pp. 758-765eng
hcfmusp.scopus.lastupdate2024-06-09
relation.isAuthorOfPublication757f2d9e-e020-4957-b60a-935523a6efff
relation.isAuthorOfPublication.latestForDiscovery757f2d9e-e020-4957-b60a-935523a6efff
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_MARIN_Effect_of_exercise_intensity_after_a_single_session_2020.PDF
Tamanho:
228.55 KB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)