The use of wing shape for characterising macroevolution in mosquitoes (Diptera: Culicidae)

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
LORENZ, Camila
Citação
INFECTION GENETICS AND EVOLUTION, v.77, article ID 104052, 9p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The wing form of culicid mosquitoes shows considerable variation among groups: this phenomenon has been addressed by several studies through space-time analyses in mosquito populations, species, and genera. The observed variation results from a combination of two distinct factors: heredity and phenotypic plasticity. The first is usually related to wing shape, a complex character that may serve as a taxonomic marker in specific cases. We hypothesized that wing shape might be phylogenetically meaningful in Culicidae. In this study, we applied a geometric morphometrical approach based on 18 landmarks in 81 species of mosquitoes, representing 19 different genera, to investigate whether wing shape can help retrieve macroevolutionary patterns or identify any phylogenetic signals. We observed that wing shape differed considerably among groups, especially between Anophelinae and Culicinae subfamilies; thus, some wing shape elements may be synapomorphic. Comparisons among wing consensus after Procrustes superimposition revealed that landmark #1, located between the veins RS and R1, was the most variable. Sabethini tribe was distinguished from other taxa owing to a strong phylogenetic signal of its wings, whereas other culicids presented weaker signals and were not that distinguishable. Evolutionary forces such as natural selection, evolutionary limitation/constraint, or canalization mechanisms might drive the evolution of wing phenotype. These findings suggest that the wing undergoes evolution over long periods, but is not neutral enough to reconstruct the phylogenetic history of these insects. Gene-based studies should be performed to understand the driving forces in wing evolution.
Palavras-chave
Geometric morphometrics, Landmark, Subfamily, Phylogenetic signal
Referências
  1. Altamiranda-Saavedra M., 2017, GENETICS EVOLUTION, V56, P143
  2. Bitner-Mathe BC, 1999, HEREDITY, V83, P688, DOI 10.1038/sj.hdy.6886060
  3. Breuker CJ, 2006, TRENDS ECOL EVOL, V21, P488, DOI 10.1016/j.tree.2006.06.003
  4. Brust RA, 1998, CAN J ZOOL, V76, P1236, DOI 10.1139/cjz-76-7-1236
  5. BRUST RA, 1992, ANN ENTOMOL SOC AM, V85, P1, DOI 10.1093/aesa/85.1.1
  6. Bybee SM, 2008, CLADISTICS, V24, P477, DOI 10.1111/j.1096-0031.2007.00191.x
  7. Calle DA, 2002, MEM I OSWALDO CRUZ, V97, P1191, DOI 10.1590/S0074-02762002000800021
  8. Cardini A, 2008, BIOL J LINN SOC, V93, P813, DOI 10.1111/j.1095-8312.2008.01011.x
  9. Cator L.J., 2010, BEHAV ECOL, P7
  10. Cole T.M., 2002, RICHTSMEIER PARAMETR
  11. Combes SA, 2003, J EXP BIOL, V206, P2979, DOI 10.1242/jeb.00523
  12. Courant F, 1997, BIOL J LINN SOC, V62, P505, DOI 10.1006/bijl.1997.0172
  13. Crozatier M, 2004, TRENDS GENET, V20, P498, DOI 10.1016/j.tig.2004.07.013
  14. de Celis JF, 2003, INT J DEV BIOL, V47, P653
  15. Debat V, 2001, TRENDS ECOL EVOL, V16, P555, DOI 10.1016/S0169-5347(01)02266-2
  16. Dujardin JP, 2008, INFECT GENET EVOL, V8, P875, DOI 10.1016/j.meegid.2008.07.011
  17. FELSENSTEIN J, 1995, PHYLIP PHYLOGENY INF
  18. Flatt T, 2005, Q REV BIOL, V80, P287, DOI 10.1086/432265
  19. Forattini O. P, 2002, CULICIDOLOGIA MED
  20. Gibson G, 2000, BIOESSAYS, V22, P372, DOI 10.1002/(SICI)1521-1878(200004)22:4<372::AID-BIES7>3.0.CO;2-J
  21. Gilchrist AS, 2001, HEREDITY, V86, P144, DOI 10.1046/j.1365-2540.2001.00779.x
  22. Gilchrist AS, 2000, EVOL DEV, V2, P114, DOI 10.1046/j.1525-142x.2000.00041.x
  23. Gomez GF, 2017, INFECT GENET EVOL, V54, P379, DOI 10.1016/j.meegid.2017.07.028
  24. Gomez GF, 2014, ACTA TROP, V135, P75, DOI 10.1016/j.actatropica.2014.03.020
  25. Guerrero JA, 2003, BIOL J LINN SOC, V80, P45, DOI 10.1046/j.1095-8312.2003.00218.x
  26. Harbach R.E., 2007, ZOOTAXA, V1668, P538
  27. Henry A, 2010, INFECT GENET EVOL, V10, P207, DOI 10.1016/j.meegid.2009.12.001
  28. Hoffmann AA, 2002, EVOLUTION, V56, P1068, DOI 10.1111/j.0014-3820.2002.tb01418.x
  29. Iriarte PF, 2003, J GENET, V82, P95, DOI 10.1007/BF02715812
  30. Jirakanjanakit N, 2007, TROP MED INT HEALTH, V12, P1354, DOI 10.1111/j.1365-3156.2007.01919.x
  31. Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x
  32. Klingenberg CP, 2010, SYST BIOL, V59, P245, DOI 10.1093/sysbio/syp106
  33. Lorenz C, 2019, BMC GENOMICS, V20, DOI 10.1186/s12864-019-6069-3
  34. Lorenz C, 2017, INFECT GENET EVOL, V54, P205, DOI 10.1016/j.meegid.2017.06.029
  35. Lorenz C, 2015, INFECT GENET EVOL, V35, P144, DOI 10.1016/j.meegid.2015.08.011
  36. Lorenz C, 2014, PARASITE VECTOR, V7, DOI 10.1186/s13071-014-0581-8
  37. Lorenz C, 2013, AM J TROP MED HYG, V89, P928, DOI 10.4269/ajtmh.13-0359
  38. Lorenz C, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-257
  39. MacLeod N., 2002, MORPHOLOGY SHAPE PHY, V100, P138
  40. Marcus L., 2000, HYSTRIX ITALIAN J MA, V11, P34
  41. Milne N, 2002, J ZOOL, V256, P523, DOI 10.1017/S0952836902000572
  42. Monteiro L.R., 1999, REIS SFD PRINCIPIOS
  43. MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113
  44. Patterson JS, 2007, EVOL DEV, V9, P525, DOI 10.1111/j.1525-142X.2007.00193.x
  45. Pretorius E, 2001, BIOL J LINN SOC, V74, P35, DOI 10.1111/j.1095-8312.2001.tb01375.x
  46. Reidenbach KR, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-298
  47. Rohlf F.J., 2005, TPSDIG DIGITIZE LAND
  48. Rohlf F.J., 2003, TPSRELW RELATIVE WAR
  49. Rohlf F.J., 2003, TPSREGR SHAPE REGRES
  50. Rohlf F.J., 2004, TPSUTIL FILE UTILITY
  51. Smith KL, 2011, EVOLUTION, V65, P976, DOI 10.1111/j.1558-5646.2010.01211.x
  52. Suesdek L., 2019, ACTA TROP, V14, P53
  53. Swiderski D., 2000, J MAMMAL, V11
  54. True JR, 1999, CURR BIOL, V9, P1382, DOI 10.1016/S0960-9822(00)80083-4
  55. Vidal PO, 2011, REV BRAS ENTOMOL, V55, P134, DOI 10.1590/S0085-56262011000100022
  56. VOGEL S, 1994, LIFE MOVING FLUIDS
  57. Waddington CH, 1940, J GENET, V41, P75, DOI 10.1007/BF02982977
  58. Wilke A.B.B., 2016, PLOS ONE, V11
  59. Wittkopp PJ, 2003, TRENDS GENET, V19, P495, DOI 10.1016/S0168-9525(03)00194-X
  60. Wootton JT, 1998, AM NAT, V152, P803, DOI 10.1086/286210
  61. WOOTTON RJ, 1992, ANNU REV ENTOMOL, V37, P113, DOI 10.1146/annurev.en.37.010192.000553
  62. ZELDITCH ML, 1995, SYST BIOL, V44, P179, DOI 10.2307/2413705
  63. Zelditch ML, 1998, SYST BIOL, V47, P159, DOI 10.1080/106351598261102