Patellar Tilt and Patellar Tendon-Trochlear Groove Angle Present the Optimum Magnetic Resonance Imaging Diagnostic Reliability for Patients With Patellar Instability

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
W B SAUNDERS CO-ELSEVIER INC
Citação
ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, v.39, n.11, p.2339-2351, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: To describe, in controls and in a population with patellar instability, magnetic resonance imaging values of measurements representing major associated factors for patellar instability (patellar height, trochlear dysplasia, and extensor mechanism alignment), as well as their cutoff values. Methods: In total, 323 knee magnetic resonance imaging scans, 142 with patellar instability and 181 controls without patellofemoral complaints (anterior cruciate, medial collateral ligament, meniscus ruptures or normal) were evaluated. Means, normality values in the control population, ideal cutoff values through receiver operating characteristic curves analysis, and interobserver reliability (intraclass correlation coefficient) were described for a series of measurements. Results: All measurements were statistically different in control and instability patients, except for the patellotrochlear index and tibial tuberosity to posterior cruciate ligament distance. The interobserver intraclass correlation coefficient was good or excellent (above 0.75) only for the patellotrochlear index, patellar tendon-trochlear groove (PTTG) angle, and patellar tilt. The optimal cutoff value for each measurement was: PTTG angle >= 25.3(degrees) with sensitivity (S) of 70% and specificity (E) of 89%, patellar tilt >= 16o (S: 69% and E: 84%), trochlear sulcus angle >= 153(degrees) (S: 75% and E: 76%), Carrillon <= 12.8(degrees) (S: 62% and E: 87%), PTTG distance >= 11mm (S: 71% and E: 78%), Caton-Deschamps index >= 1.23 (S: 72% and E: 76%) and trochlear bump >= 3.95 mm (S: 76% and E: 65%). Conclusions: Caton-Deschamps index (>= 1.23), trochlear sulcus angle (>= 153(degrees)), ventral prominence of the trochlea (>= 3.95 mm), PTTG distance (>= 11 mm), PTTG angle (>= 25.3o), Carrillon angle (<= 12.8(degrees)), and patellar tilt (>= 16(degrees)) presented better diagnostic performance for patellar instability. Patellotrochlear index and tibial tuberosity to posterior cruciate ligament distance were not related to patellar instability. The interobserver reliability of the factors related to patellar instability was excellent only for the PTTG angle and lateral patellar tilt. Level of Evidence: Level III, retrospective case-control study.
Palavras-chave
Referências
  1. Biedert RM, 2006, KNEE SURG SPORT TR A, V14, P707, DOI 10.1007/s00167-005-0015-4
  2. Brattstrom H, 1964, Acta Orthop Scand, V35, P1
  3. Bujang MA, 2017, ARCH OROFAC SCI, V12, P1
  4. Bujang MA, 2016, J CLIN DIAGN RES, V10, pYE1, DOI 10.7860/JCDR/2016/18129.8744
  5. Camp CL, 2013, AM J SPORT MED, V41, P1835, DOI 10.1177/0363546513484895
  6. Carrillon Y, 2000, RADIOLOGY, V216, P582, DOI 10.1148/radiology.216.2.r00au07582
  7. CATON J, 1982, REV CHIR ORTHOP, V68, P317
  8. Charles MD, 2013, AM J SPORT MED, V41, P374, DOI 10.1177/0363546512472441
  9. Cristina BA, 2003, Int J Health Care Qual Assur, V16, P191
  10. Dejour D, 2013, Orthop Traumatol Surg Res, V99, pS391, DOI 10.1016/j.otsr.2013.10.008
  11. Dejour D, Medecine et hygiene
  12. Dejour H, 1994, Knee Surg Sports Traumatol Arthrosc, V2, P19, DOI 10.1007/BF01552649
  13. DEJOUR H, 1990, REV CHIR ORTHOP, V76, P45
  14. Dietrich TJ, 2014, KNEE SURG SPORT TR A, V22, P214, DOI 10.1007/s00167-012-2357-z
  15. Friedman MV, 2020, AM J ROENTGENOL, V215, P1163, DOI 10.2214/AJR.19.22556
  16. Gobbi RG, 2022, J KNEE SURG, V35, P676, DOI 10.1055/s-0040-1716504
  17. GOUTALLIER D, 1978, REV CHIR ORTHOP, V64, P423
  18. Grelsamer RP, 2008, KNEE, V15, P3, DOI 10.1016/j.knee.2007.08.010
  19. HANLEY JA, 1982, RADIOLOGY, V143, P29, DOI 10.1148/radiology.143.1.7063747
  20. Hinckel BB, 2017, KNEE SURG SPORT TR A, V25, P3053, DOI 10.1007/s00167-016-4095-0
  21. Hinckel BB, 2015, ORTHOP J SPORTS MED, V3, DOI 10.1177/2325967115601031
  22. Hinckel BB, 2015, SKELETAL RADIOL, V44, P1085, DOI 10.1007/s00256-015-2118-4
  23. Köhlitz T, 2013, EUR RADIOL, V23, P1067, DOI 10.1007/s00330-012-2696-7
  24. Koo TK, 2016, J CHIROPR MED, V15, P155, DOI 10.1016/j.jcm.2016.02.012
  25. METZ CE, 1978, SEMIN NUCL MED, V8, P283, DOI 10.1016/S0001-2998(78)80014-2
  26. Mukaka MM, 2012, MALAWI MED J, V24, P69
  27. Pfirrmann CWA, 2000, RADIOLOGY, V216, P858, DOI 10.1148/radiology.216.3.r00se38858
  28. Raju S, 2021, J KNEE SURG, V34, P853, DOI 10.1055/s-0039-3402045
  29. Schoettle PB, 2006, KNEE, V13, P26, DOI 10.1016/j.knee.2005.06.003
  30. Seitlinger G, 2012, AM J SPORT MED, V40, P1119, DOI 10.1177/0363546512438762
  31. Skelley N, 2015, AM J SPORT MED, V43, P873, DOI 10.1177/0363546514565768
  32. Smith TO, 2011, SKELETAL RADIOL, V40, P399, DOI 10.1007/s00256-010-0961-x
  33. Su P, 2021, BMC MUSCULOSKEL DIS, V22, DOI 10.1186/s12891-020-03900-3
  34. Tan SHS, 2020, J KNEE SURG, V33, P768, DOI 10.1055/s-0039-1688563
  35. Tecklenburg K, 2006, KNEE SURG SPORT TR A, V14, P235, DOI 10.1007/s00167-005-0683-0
  36. Xu ZJ, 2021, ARTHROSCOPY, V37, P234, DOI 10.1016/j.arthro.2020.09.004
  37. Ye Q, 2019, BMC MUSCULOSKEL DIS, V20, DOI 10.1186/s12891-019-2697-7
  38. YOUDEN WJ, 1950, CANCER-AM CANCER SOC, V3, P32, DOI 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
  39. Zhang LK, 2016, ORTHOP SURG, V8, P490, DOI 10.1111/os.12295