Evaluation of glomerular sirtuin-1 and claudin-1 in the pathophysiology of nondiabetic focal segmental glomerulosclerosis

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PORTFOLIO
Autores
LOPES-GONCALVES, Guilherme
COSTA-PESSOA, Juliana Martins
TOSTES, Ana Flavia
SILVA, Eloisa Martins da
THIEME, Karina
CAMARA, Niels Olsen Saraiva
Citação
SCIENTIFIC REPORTS, v.13, n.1, article ID 22685, 14p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Focal segmental glomerulosclerosis (FSGS) is the leading cause of nephrotic syndrome, which is characterized by podocyte injury. Given that the pathophysiology of nondiabetic glomerulosclerosis is poorly understood and targeted therapies to prevent glomerular disease are lacking, we decided to investigate the tight junction protein claudin-1 and the histone deacetylase sirtuin-1 (SIRT1), which are known to be involved in podocyte injury. For this purpose, we first examined SIRT1, claudin-1 and podocin expression in kidney biopsies from patients diagnosed with nondiabetic FSGS and found that upregulation of glomerular claudin-1 accompanies a significant reduction in glomerular SIRT1 and podocin levels. From this, we investigated whether a small molecule activator of SIRT1, SRT1720, could delay the onset of FSGS in an animal model of adriamycin (ADR)-induced nephropathy; 14 days of treatment with SRT1720 attenuated glomerulosclerosis progression and albuminuria, prevented transcription factor Wilms tumor 1 (WT1) downregulation and increased glomerular claudin-1 in the ADR + SRT1720 group. Thus, we evaluated the effect of ADR and/or SRT1720 in cultured mouse podocytes. The results showed that ADR [1 mu M] triggered an increase in claudin-1 expression after 30 min, and this effect was attenuated by pretreatment of podocytes with SRT1720 [5 mu M]. ADR [1 mu M] also led to changes in the localization of SIRT1 and claudin-1 in these cells, which could be associated with podocyte injury. Although the use of specific agonists such as SRT1720 presents some benefits in glomerular function, their underlying mechanisms still need to be further explored for therapeutic use. Taken together, our data indicate that SIRT1 and claudin-1 are relevant for the pathophysiology of nondiabetic FSGS.
Palavras-chave
Referências
  1. Al-Sadi RM, 2007, J IMMUNOL, V178, P4641, DOI 10.4049/jimmunol.178.7.4641
  2. [Anonymous], 2021, KIDNEY INT, V99, pS26, DOI 10.1016/j.kint.2020.11.003
  3. Blaine J, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9071700
  4. Bryant C, 2022, FRONT CELL DEV BIOL, V10, DOI 10.3389/fcell.2022.924751
  5. Cardoso VG, 2018, BMC NEPHROL, V19, DOI 10.1186/s12882-018-0968-4
  6. Chang JW, 2016, NEPHRON, V133, P116, DOI 10.1159/000447067
  7. Chen ZY, 2017, ONCOTARGET, V8, P88792, DOI 10.18632/oncotarget.21287
  8. Darouich S, 2011, ULTRASTRUCT PATHOL, V35, P176, DOI 10.3109/01913123.2011.584657
  9. de Ponte MC, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-97839-7
  10. De Vriese AS, 2021, NAT REV NEPHROL, V17, P619, DOI 10.1038/s41581-021-00427-1
  11. De Vriese AS, 2018, J AM SOC NEPHROL, V29, P759, DOI 10.1681/ASN.2017090958
  12. Dong YJ, 2014, J DIABETES RES, V2014, DOI 10.1155/2014/843786
  13. Elhefnawy N. G., 2019, J. Nephropathol., V8, P1
  14. Feige JN, 2008, CELL METAB, V8, P347, DOI 10.1016/j.cmet.2008.08.017
  15. Fogo AB, 2015, NAT REV NEPHROL, V11, P76, DOI 10.1038/nrneph.2014.216
  16. French AD, 2009, INT J MED SCI, V6, P93
  17. Funk JA, 2010, J PHARMACOL EXP THER, V333, P593, DOI 10.1124/jpet.109.161992
  18. Gonçalves GL, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-36933-9
  19. Gong YF, 2017, J AM SOC NEPHROL, V28, P106, DOI 10.1681/ASN.2015121324
  20. Guo JC, 2008, J AM SOC NEPHROL, V19, P961, DOI 10.1681/ASN.2007101109
  21. Han WX, 2019, J ENDOCRINOL, V241, P85, DOI 10.1530/JOE-18-0536
  22. Hasegawa K, 2008, BIOCHEM BIOPH RES CO, V372, P51, DOI 10.1016/j.bbrc.2008.04.176
  23. Hasegawa K, 2019, CLIN EXP NEPHROL, V23, P987, DOI 10.1007/s10157-019-01719-4
  24. Hasegawa K, 2013, NAT MED, V19, P1496, DOI 10.1038/nm.3363
  25. Hong Q, 2018, KIDNEY INT, V93, P1330, DOI 10.1016/j.kint.2017.12.008
  26. Iida M, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0265081
  27. Kang YS, 2010, KIDNEY INT, V78, P363, DOI 10.1038/ki.2010.137
  28. Kim H, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18020305
  29. Kirk A, 2010, NEPHROL DIAL TRANSPL, V25, P2107, DOI 10.1093/ndt/gfq006
  30. Königshausen E, 2016, BIOMED RES INT, V2016, DOI 10.1155/2016/3765608
  31. Kong LL, 2015, MOL MED, V21, DOI 10.2119/molmed.2014.00211
  32. Lee DBN, 2006, AM J PHYSIOL-RENAL, V290, pF20, DOI 10.1152/ajprenal.00052.2005
  33. Lee VWS, 2011, NEPHROLOGY, V16, P30, DOI 10.1111/j.1440-1797.2010.01383.x
  34. Li F, 2022, KIDNEY INT, V102, P121, DOI 10.1016/j.kint.2022.02.037
  35. Li GB, 2021, CELL PHYSIOL BIOCHEM, V55, P13, DOI 10.33594/000000356
  36. Li JH, 2011, PEDIATR NEPHROL, V26, P2133, DOI 10.1007/s00467-011-1824-y
  37. Lyu L, 2018, CHINESE MED J-PEKING, V131, P2743, DOI 10.4103/0366-6999.245266
  38. Casare FAM, 2016, AM J PHYSIOL-RENAL, V310, pF1295, DOI 10.1152/ajprenal.00471.2015
  39. Maria-Ferreira D, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-30526-2
  40. Mitchell SJ, 2014, CELL REP, V6, P836, DOI 10.1016/j.celrep.2014.01.031
  41. Mori K, 2011, KIDNEY INT, V79, P1274, DOI 10.1038/ki.2011.36
  42. Morigi M, 2018, J AM SOC NEPHROL, V29, P1799, DOI 10.1681/ASN.2017111218
  43. Mundel P, 1997, EXP CELL RES, V236, P248, DOI 10.1006/excr.1997.3739
  44. Musiala A, 2022, J CLIN MED, V11, DOI 10.3390/jcm11123292
  45. Nihalani D, 2013, NAT MED, V19, P1371, DOI 10.1038/nm.3386
  46. Nishizono R, 2017, J AM SOC NEPHROL, V28, P2931, DOI 10.1681/ASN.2017020174
  47. Ohse T, 2009, AM J PHYSIOL-RENAL, V297, pF1566, DOI 10.1152/ajprenal.00214.2009
  48. Ozeki T, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0244677
  49. Ponnusamy M, 2015, J PHARMACOL EXP THER, V354, P142, DOI 10.1124/jpet.115.224386
  50. Rosenberg AZ, 2017, CLIN J AM SOC NEPHRO, V12, P502, DOI 10.2215/CJN.05960616
  51. SAITO T, 1987, KIDNEY INT, V32, P691, DOI 10.1038/ki.1987.262
  52. Saurus P, 2015, CELL DEATH DIS, V6, DOI 10.1038/cddis.2015.125
  53. Sladojevic N, 2019, J NEUROSCI, V39, P743, DOI 10.1523/JNEUROSCI.1432-18.2018
  54. Smeets B, 2014, AM J PATHOL, V184, P3239, DOI 10.1016/j.ajpath.2014.08.007
  55. Sun K, 2021, KIDNEY DIS-BASEL, V7, P350, DOI 10.1159/000517108
  56. Sung JY, 2020, FEBS OPEN BIO, V10, P1316, DOI 10.1002/2211-5463.12895
  57. Vivarelli M, 2017, CLIN J AM SOC NEPHRO, V12, P332, DOI 10.2215/CJN.05000516
  58. Wang K, 2020, PROSTATE, V80, P1203, DOI 10.1002/pros.24046
  59. Wang XL, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-36911-1
  60. Wang Y, 2000, KIDNEY INT, V58, P1797, DOI 10.1046/j.1523-1755.2000.00342.x
  61. Wei J, 2015, ARTHRITIS RHEUMATOL, V67, P1323, DOI 10.1002/art.39061
  62. Yanagisawa S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0193921
  63. Yang SY, 2016, SCI REP-UK, V6, DOI 10.1038/srep32787
  64. Yeung F, 2004, EMBO J, V23, P2369, DOI 10.1038/sj.emboj.7600244
  65. Yi MX, 2017, AM J PHYSIOL-RENAL, V313, pF74, DOI 10.1152/ajprenal.00114.2017
  66. Zhang JN, 2019, BRIT J PHARMACOL, V176, P4558, DOI 10.1111/bph.14822
  67. Zhang T, 2019, MED SCI MONITOR, V25, P1220, DOI 10.12659/MSM.911714
  68. Zhong JY, 2019, J HISTOCHEM CYTOCHEM, V67, P623, DOI 10.1369/0022155419850170
  69. Zhong YF, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00624
  70. Zhou LL, 2015, NAT REV NEPHROL, V11, P535, DOI 10.1038/nrneph.2015.88
  71. Zhou LL, 2015, J AM SOC NEPHROL, V26, P677, DOI 10.1681/ASN.2013101067