Molecular Investigation Confirms Myotis Genus Bats as Common Hosts of Polychromophilus in Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
MINOZZO, Guilherme Augusto
BIONDO, Alexander Welker
COSTA, Jaciara de Oliveira Jorge
SOARES, Herbert Sousa
MARCILI, Arlei
GUIMARAES, Lilian de Oliveira
SANTOS, Andrea Pires Dos
RIEDIGER, Irina Nastassja
Citação
MICROORGANISMS, v.11, n.6, article ID 1531, 16p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Plasmodium spp. and some other blood parasites belonging to the order Haemosporida are the focus of many epidemiological studies worldwide. However, haemosporidian parasites from wild animals are largely neglected in scientific research. For example, Polychromophilus parasites, which are exclusive to bats, are described in Europe, Asia, Africa, and Oceania, but little is known about their presence and genetic diversity in the New World. In this study, 224 samples of bats from remaining fragments of the Atlantic Forest and Pantanal biomes, as well as urbanized areas in southern and southeastern Brazil, were analyzed for the presence of haemosporidian parasites by PCR of the mitochondrial gene that encodes cytochrome b (cytb). The PCR fragments of the positive samples were sequenced and analyzed by the Bayesian inference method to reconstruct the phylogenetic relationships between Polychromophilus parasites from bats in Brazil and other countries. Sequences from Brazilian lineages of Polychromophilus were recovered in a clade with sequences from Polychromophilus murinus and close to the one Polychromophilus sequence obtained in Panama, the only available sequence for the American continent. This clade was restricted to bats of the family Vespertilionidae and distinct from Polychromophilus melanipherus, a parasite species mainly found in bats of the family Miniopteridae. The detection of Polychromophilus and the genetic proximity to P. murinus were further confirmed with the amplification of two other genes (clpc and asl). We also found a Haemosporida parasite sequence in a sample of Noctilio albiventris collected in the Pantanal biome, which presents phylogenetic proximity with avian Haemoproteus sequences. Morphological and molecular studies are still needed to conclude and describe the Polychromophilus species in Brazilian Myotis bats in more detail and to confirm Haemoproteus parasites in bats. Nevertheless, these molecular results in Brazilian bats confirm the importance of studying these neglected genera.
Palavras-chave
Polychromophilus, bats, phylogeny, cytb, clpc, asl
Referências
  1. Abreu E.F., LISTA MAMIFEROS BRAS
  2. [Anonymous], 2010, RAMBAUT FIGTREE TREE
  3. Beltz L.A., 2018, BATS HUMAN HLTH EBOL
  4. Borner J, 2016, MOL PHYLOGENET EVOL, V94, P221, DOI 10.1016/j.ympev.2015.09.003
  5. Carreno RA, 1997, ARCH PROTISTENKD, V148, P245, DOI 10.1016/S0003-9365(97)80005-X
  6. Dias D, 2013, ZOOTAXA, V3722, P347
  7. dos Santos LC, 2020, COMP IMMUNOL MICROB, V69, DOI 10.1016/j.cimid.2020.101416
  8. Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294
  9. GARNHAM PCC, 1971, MEM I OSWALDO CRUZ, V69, P119, DOI 10.1590/S0074-02761971000100009
  10. Huelsenbeck JP, 2001, BIOINFORMATICS, V17, P754, DOI 10.1093/bioinformatics/17.8.754
  11. Kumar S, 2018, MOL BIOL EVOL, V35, P1547, DOI 10.1093/molbev/msy096
  12. LANDAU I, 1984, ANN PARASIT HUM COMP, V59, P437, DOI 10.1051/parasite/1984595437
  13. LANDAU I, 1980, ANN PARASIT HUM COMP, V55, P13, DOI 10.1051/parasite/1980551013
  14. Landau I, 2012, PARASITE, V19, P137, DOI 10.1051/parasite/2012192137
  15. Landau Irene, 2012, Memoirs of the Queensland Museum, V55, P61
  16. Martinsen ES, 2008, MOL PHYLOGENET EVOL, V47, P261, DOI 10.1016/j.ympev.2007.11.012
  17. Minozzo GA, 2021, MICROORGANISMS, V9, DOI 10.3390/microorganisms9061240
  18. Nogueira Marcelo Rodrigues, 2014, Check List, V10, P808
  19. Pacheco MA, 2023, TRENDS PARASITOL, V39, P501, DOI 10.1016/j.pt.2023.04.004
  20. Pacheco MA, 2018, MOL BIOL EVOL, V35, P383, DOI 10.1093/molbev/msx285
  21. Paglia A.P., 2012, ANNOTATED CHECKLIST, V2
  22. Perkins SL, 2002, J PARASITOL, V88, P972, DOI 10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2
  23. Perkins SL, 2016, TRENDS PARASITOL, V32, P772, DOI 10.1016/j.pt.2016.06.001
  24. Perkins SL, 2009, J PARASITOL, V95, P424, DOI 10.1645/GE-1750.1
  25. Reis N.R., 2013, SERIE MANUAIS GUIAS, V1st ed.
  26. Reis NR, 2017, HIST NATURAL MORCEGO, V1
  27. Rosyadi I, 2022, PARASITOL RES, V121, P2547, DOI 10.1007/s00436-022-07592-7
  28. Ruiz F, 2010, MEM I OSWALDO CRUZ, V105, P899, DOI 10.1590/S0074-02762010000700010
  29. Schaer J, 2013, P NATL ACAD SCI USA, V110, P17415, DOI 10.1073/pnas.1311016110
  30. Simmons N. B., 2005, MAMMAL SPECIES WORLD, V3, P312, DOI [10.1093/acprof, DOI 10.1007/S10914-006-9022-6]
  31. THOMPSON JD, 1994, NUCLEIC ACIDS RES, V22, P4673, DOI 10.1093/nar/22.22.4673
  32. Valkiunas G., 2005, AVIAN MALARIA PARASI, VVolume 946
  33. Votypka J., 2017, HDB PROTISTS, P567, DOI 10.1007/978-3-319-28149-0_20