Pancreatic Stem Cells and Regenerative Medicine of Endocrine Pancreas

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
bookPart
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
SILVA, I. B. B.
LOJUDICE, F. H.
KOSSUGUE, P. M.
SOGAYAR, M. C.
Citação
Mantovani, M. C.; Silva, I. B. B.; Lojudice, F. H.; Kossugue, P. M.; Sogayar, M. C.. Pancreatic Stem Cells and Regenerative Medicine of Endocrine Pancreas. In: . Resident Stem Cells and Regenerative Therapy: Sources and Clinical Applications, Second Edition: ELSEVIER, 2023. p.75-103.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
During embryogenesis, the first pancreatic cells arise from a region located in the posterior foregut. Different signals are important to induce the formation of both the ventral and dorsal buds of the pancreas, along with the differentiation of all kinds of pancreatic cells. Other factors are also important to maintain a proliferative pool of pancreatic progenitor cells within the embryonic ductal epithelium. After organogenesis, new beta cells can also be originated by expansion or neogenesis. Different stem cell populations have been described in the pancreas: ductal and acinar cells, nestin-positive cells, hepatocyte growth factor receptor-positive cells, c-Kit-positive cells, and DCAMKL-1-positive cells. Transdifferentiation or dedifferentiation followed by differentiation is also described as being present in the pancreas. Thus, other pancreatic cells that do not belong to the endocrine lineage are possible sources of new beta cells. Extra-pancreatic tissue may also be modified to express insulin, including the hepatic tissue, bone marrow, and monocytes. In addition, stem cells from several sources have been subjected to differentiation protocols, expecting to achieve insulin-producing cells with and without genetic manipulation. © 2024 Elsevier Inc. All rights reserved.
Palavras-chave
c-Kit, CK-19, Diabetes, Insulin, Mesenchymal stem cells, Nestin, Pancreatic duct, Pancreatic stem cells, PDX-1, Primitive endoderm
Referências
  1. Sakula A., Paul Langerhans (1847-1888): a centenary tribute, J R Soc Med, 81, 7, pp. 414-415, (1988)
  2. Bonner-Weir S., The islets of Langerhans continue to reveal their secrets, Nat Rev Endocrinol, 16, pp. 73-74, (2020)
  3. Edlund H., Pancreatic organogenesis--developmental mechanisms and implications for therapy, Nat Rev Genet, 3, 7, pp. 524-532, (2002)
  4. McCracken K.W., Wells J.M., Molecular pathways controlling pancreas induction, Semin Cell Dev Biol, 23, 6, pp. 656-662, (2012)
  5. D'Amour K.A., Agulnick A.D., Eliazer S., Kelly O.G., Kroon E., Baetge E.E., Efficient differentiation of human embryonic stem cells to definitive endoderm, Nat Biotechnol, 23, 12, pp. 1534-1541, (2005)
  6. Shih H.P., Wang A., Sander M., Pancreas organogenesis: from lineage determination to morphogenesis, Annu Rev Cell Dev Biol, 29, pp. 81-105, (2013)
  7. Pin C., Fenech M., Development of the pancreas, Pancreapedia: exocrine pancreas knowledge base, (2017)
  8. Sakhneny L., Khalifa-Malka L., Landsman L., Pancreas organogenesis: approaches to elucidate the role of epithelial-mesenchymal interactions, Semin Cell Dev Biol, 92, pp. 89-96, (2019)
  9. Kim S.K., Hebrok M., Melton D.A., Notochord to endoderm signaling is required for pancreas development, Development, 124, 21, pp. 4243-4252, (1997)
  10. Gittes G.K., Developmental biology of the pancreas: a comprehensive review, Dev Biol, 326, 1, pp. 4-35, (2009)
  11. Mfopou J.K., Chen B., Sui L., Sermon K., Bouwens L., Recent advances and prospects in the differentiation of pancreatic cells from human embryonic stem cells, Diabetes, 59, 9, pp. 2094-2101, (2010)
  12. Geneser F., Histologia: com bases moleculares, (2003)
  13. Soetedjo A.A.P., Lee J.M., Lau H.H., Goh G.L., An J., Koh Y., Et al., Tissue engineering and 3D printing of bioartificial pancreas for regenerative medicine in diabetes, Trends Endocrinol Metab, 32, 8, pp. 609-622, (2021)
  14. Junqueira L.C., Carneiro J., Histologia Básica: texto e atlas, (2013)
  15. Bento A., Baptista H., Oliveira F., Malformações congênitas do pâncreas: um caso clínico, Rev Assoc Med Bras, 59, 1, pp. 35-39, (2013)
  16. Ionescu-Tirgoviste C., Gagniuc P.A., Gubceac E., Mardare L., Popescu I., Dima S., Et al., A 3D map of the islet routes throughout the healthy human pancreas, Sci Rep, 5, (2015)
  17. Da Silva Xavier G., The cells of the islets of Langerhans, J Clin Med, 7, (2018)
  18. Zhang X.X., Pan Y.H., Huang Y.M., Zhao H.L., Neuroendocrine hormone amylin in diabetes, World J Diabetes, 7, 9, pp. 189-197, (2016)
  19. Bonner-Weir S., Endocrine pancreas, encyclopedia of gastroenterology, pp. 675-680, (2004)
  20. Mantovani M.C., Descelularização pancreática visando à recelularização como alternativa terapêutica para o diabetes mellitus tipo I. 2019. Tese (Doutorado em Distúrbios Genéticos de Desenvolvimento e Metabolismo) - faculdade de Medicina, (2019)
  21. Anatomy and Physiology - 17.9 The Endocrine Pancreas - ISBN-10: 1-947172-04-2/ISBN-13:978-1-947172-04-3
  22. Haake K., Ackermann M., Lachmann N., Concise review: towards the clinical translation of induced pluripotent stem cell-derived blood cells—ready for take-off, Stem Cells Transl Med, 8, 4, pp. 332-339, (2019)
  23. Citro A., Ott H.C., Can we Re-engineer the endocrine pancreas?, Curr Diab Rep, 18, 11, (2018)
  24. Zhou Q., Melton D.A., Pancreas regeneration, Nature, 557, 7705, pp. 351-358, (2018)
  25. Meier J.J., Et al., β-Cell development and turnover during prenatal life in humans, Eur J Endocrinol, 162, 3, pp. 559-568, (2010)
  26. Aguayo-Mazzucato C., Bonner-Weir S., Pancreatic β cell regeneration as a possible therapy for diabetes, Cell Metabol, 27, 1, pp. 57-67, (2018)
  27. Dor Y., Brown J., Martinez O., Et al., Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation, Nature, 429, pp. 41-46, (2004)
  28. Labriola L., Et al., Beneficial effects of prolactin and laminin on human pancreatic islet-cell cultures, Mol Cell Endocrinol, 263, 1-2, pp. 120-133, (2007)
  29. Spears E., Serafimidis I., Powers A.C., Gavalas A., Debates in pancreatic beta cell biology: proliferation versus progenitor differentiation and transdifferentiation in restoring β cell mass, Front Endocrinol, 12, (2021)
  30. Paris M., Et al., Pancreatic β-cell neogenesis revisited, Exp Diabesity Res, 5, 2, pp. 111-121, (2004)
  31. Gribben C., Et al., Ductal Ngn3-expressing progenitors contribute to adult β cell neogenesis in the pancreas, Cell Stem Cell, 28, 11, pp. 2000-2008, (2021)
  32. McKimpson W.M., Accili D., Reprogramming cells to make insulin, J Endocr Soc, 3, Issue 6, pp. 1214-1226, (2019)
  33. Scheibner K., Bakhti M., Bastidas-Ponce A., Lickert H., Wnt signaling: implications in endoderm development and pancreas organogenesis, Curr Opin Cell Biol, 61, pp. 48-55, (2019)
  34. Arias A.E., Bendayan M., Differentiation of pancreatic acinar cells into duct-like cells in vitro, Lab Invest, 69, 5, pp. 518-530, (1993)
  35. De Lisle R.C., Logsdon C.D., Pancreatic acinar cells in culture: expression of acinar and ductal antigens in a growth-related manner, Eur J Cell Biol, 51, 1, pp. 64-75, (1990)
  36. Hall P.A., Lemoine N.R., Rapid acinar to ductal transdifferentiation in cultured human exocrine pancreas, J Pathol, 166, 2, pp. 97-103, (1992)
  37. Edlund H., Transcribing pancreas, Diabetes, 47, 12, pp. 1817-1823, (1998)
  38. St-Onge L., Wehr R., Gruss P., Pancreas development and diabetes, Curr Opin Genet Dev, 9, 3, pp. 295-300, (1999)
  39. Pan F.C., Et al., Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration, Development, 140, 4, pp. 751-764, (2013)
  40. Thorel F., Herrera P.L., Conversion of adult pancreatic alpha-cells to beta-cells in diabetic mice, M-S (Med Sci): Méd/Sci, 26, 11, pp. 906-909, (2010)
  41. Chera S., Et al., Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers, Nature, 514, 7523, pp. 503-507, (2014)
  42. Guz Y., Nasir I., Teitelman G., Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes, Endocrinology, 142, 11, pp. 4956-4968, (2001)
  43. Maria-Engler S.S., Et al., Co-localization of nestin and insulin and expression of islet cell markers in long-term human pancreatic nestin-positive cell cultures, J Endocrinol, 183, 3, pp. 455-467, (2004)
  44. Yu X.X., Qiu W.L., Yang L., Zhang Y., He M.Y., Li L.C., Et al., Defining multistep cell fate decision pathways during pancreatic development at single-cell resolution, EMBO J, 38, 8, (2019)
  45. Zulewski H., Et al., Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes, Diabetes, 50, 3, pp. 521-533, (2001)
  46. Lechner A., Et al., No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo, Diabetes, 53, 3, pp. 616-623, (2004)
  47. Kim S.Y., Et al., Activation of nestin-positive duct stem (NPDS) cells in pancreas upon neogenic motivation and possible cytodifferentiation into insulin-secreting cells from NPDS cells, Dev Dynam, 230, 1, pp. 1-11, (2004)
  48. Nagasao J., Et al., Expression of nestin and IGF-1 in rat pancreas after streptozotocin administration, Anat Histol Embryol, 33, 1, pp. 1-4, (2004)
  49. Delacour A., Et al., Nestin expression in pancreatic exocrine cell lineages, Mech Dev, 121, 1, pp. 3-14, (2004)
  50. Street C.N., Et al., Heterogenous expression of nestin in human pancreatic tissue precludes its use as an islet precursor marker, J Endocrinol, 180, 2, pp. 213-225, (2004)
  51. Treutelaar M.K., Et al., Nestin-lineage cells contribute to the microvasculature but not endocrine cells of the islet, Diabetes, 52, 10, pp. 2503-2512, (2003)
  52. Wang R., Et al., Nestin expression and clonal analysis of islet-derived epithelial monolayers: insight into nestin-expressing cell heterogeneity and differentiation potential, J Endocrinol, 184, 2, pp. 329-339, (2005)
  53. Suzuki A., Et al., Liver repopulation by c-Met-positive stem/progenitor cells isolated from the developing rat liver, Hepato-Gastroenterology, 51, 56, pp. 423-426, (2004)
  54. Yashpal N.K., Li J., Wang R., Characterization of c-Kit and nestin expression during islet cell development in the prenatal and postnatal rat pancreas, Dev Dynam: An Off Pub Am Assoc Anat, 229, 4, pp. 813-825, (2004)
  55. Hashemitabar M., Heidari E., Redefining the signaling pathways from pluripotency to pancreas development: in vitro β-cell differentiation, J Cell Physiol, 234, 6, pp. 7811-7827, (2019)
  56. May R., Et al., Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas, Am J Physiol Gastrointest Liver Physiol, 299, 2, pp. G303-G310, (2010)
  57. McKnight K.D., Wang P., Kim S.K., Deconstructing pancreas development to reconstruct human islets from pluripotent stem cells, Cell Stem Cell, 6, 4, pp. 300-308, (2010)
  58. Cai J., Et al., Generation of homogeneous PDX1(+) pancreatic progenitors from human ES cell-derived endoderm cells, J Mol Cell Biol, 2, 1, pp. 50-60, (2010)
  59. Wang D., Wang J., Bai L., Pan H., Feng H., Clevers H., Et al., Long-term expansion of pancreatic islet organoids from resident Procr+ progenitors, Cell, 180, 6, pp. 1198-1211, (2020)
  60. Ravi M., Paramesh V., Kaviya S.R., Anuradha E., Solomon F.D., 3D cell culture systems: advantages and applications, J Cell Physiol, 230, 1, pp. 16-26, (2015)
  61. Simian M., Bissell M.J., Organoids: a historical perspective of thinking in three dimensions, J Cell Biol, 216, 1, pp. 31-40, (2017)
  62. Wu X., Su J., Wei J., Jiang N., Ge X., Recent advances in three-dimensional stem cell culture systems and applications, Stem Cell Int, (2021)
  63. Edgar L., Pu T., Porter B., Aziz J.M., La Pointe C., Asthana A., Et al., Regenerative medicine, organ bioengineering and transplantation, Br J Surg, 107, 7, pp. 793-800, (2020)
  64. Arutyunyan I.V., Fatkhudinov T.K., Makarov A.V., Elchaninov A.V., Sukhikh G.T., Regenerative medicine of pancreatic islets, World J Gastroenterol, 26, 22, pp. 2948-2966, (2020)
  65. Zhou Q., Regenerative medicine: interspecies pancreas transplants, Nature, 542, 7640, pp. 168-169, (2017)
  66. Dumasia N.P., Khanna A.P., Pethe P.S., Sonic hedgehog signals hinder the transcriptional network necessary for pancreatic endoderm formation from human embryonic stem cells, Gene Cell, 26, 5, pp. 282-297, (2021)
  67. Akil A.A., Yassin E., Al-Maraghi A., Aliyev E., Al-Malki K., Fakhro K.A., Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era, J Transl Med, 19, 1, (2021)
  68. Eliaschewitz F.G., Et al., First Brazilian pancreatic islet transplantation in a patient with type 1 diabetes mellitus, Transplant Proc, 36, 4, pp. 1117-1118, (2004)
  69. Shapiro A.M.J., Pokrywczynska M., Ricordi C., Clinical pancreatic islet transplantation, Nature Rev Endocrinol Maio, 3, 5, pp. 268-277, (2017)
  70. Rickels M.R., Robertson R.P., Pancreatic islet transplantation in humans: recent progress and future directions, Endocr Rev, 40, 2, pp. 631-668, (2019)
  71. Witkowski P., Philipson L.H., Buse J.B., Robertson R.P., Alejandro R., Bellin M.D., Et al., Islets transplantation at a crossroads - need for urgent regulatory update in the United States: perspective presented during the scientific sessions 2021 at the American diabetes association congress, Front Endocrinol, 12, (2022)
  72. King A.J.F., Rackham C.L., Assessing islet transplantation outcome in mice, Methods Mol Biol, 2076, pp. 265-280, (2020)
  73. Cayabyab F., Nih L.R., Yoshihara E., Advances in pancreatic islet transplantation sites for the treatment of diabetes, Front Endocrinol, 12, (2021)
  74. Kim S.Y., Lee J.H., Merrins M.J., Gavrilova O., Bisteau X., Kaldis P., Et al., Loss of cyclin-dependent kinase 2 in the pancreas links primary β-cell dysfunction to progressive depletion of β-cell mass and diabetes, J Biol Chem, 292, 9, pp. 3841-3853, (2017)
  75. Zhong F., Jiang Y., Endogenous pancreatic β cell regeneration: a potential strategy for the recovery of β cell deficiency in diabetes, Front Endocrinol, 10, (2019)
  76. Mantovani M.C., Et al., Immobilization of primary cultures of insulin-releasing human pancreatic cells, Islets, 1, 3, pp. 224-231, (2009)
  77. Velazco-Cruz L., Et al., Acquisition of dynamic function in human stem cell-derived β cells, Stem Cell Rep, 12, 2, pp. 351-365, (2019)
  78. Labriola L., Et al., Prolactin-induced changes in protein expression in human pancreatic islets, Mol Cell Endocrinol, 264, 1-2, pp. 16-27, (2007)
  79. Wailemann R.A., Terra L.F., Oliveira T.C., Dos Santos A.F., Gomes V.M., Labriola L., Heat shock protein B1 is required for the prolactin-induced cytoprotective effects on pancreatic islets, Mol Cell Endocrinol, 477, pp. 39-47, (2018)
  80. Kim H.S., Lee M.K., β-Cell regeneration through the transdifferentiation of pancreatic cells: pancreatic progenitor cells in the pancreas, J diabetes Investig, 7, 3, pp. 286-296, (2016)
  81. Meivar-Levy I., Sapir T., Shternhall K.I., Et al., From the cover: cell replacement therapy for diabetes. Generating functional insulin-producing tissue from adult human liver cells, Proc Natl Acad Sci USA, 102, 22, (2005)
  82. McKimpson W.M., Accili D., Reprogramming cells to make insulin, J Endocr Soc, 3, 6, pp. 1214-1226, (2019)
  83. Tang D.Q., Et al., In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow, Diabetes, 53, 7, pp. 1721-1732, (2004)
  84. Ruhnke M., Et al., Human monocyte-derived neohepatocytes: a promising alternative to primary human hepatocytes for autologous cell therapy, Transplantation, 79, 9, pp. 1097-1103, (2005)
  85. Hess D., Et al., Bone marrow-derived stem cells initiate pancreatic regeneration, Nat Biotechnol, 21, 7, pp. 763-770, (2003)
  86. Yang L., Et al., In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells, Proc Natl Acad Sci U S A, 99, 12, pp. 8078-8083, (2002)
  87. Klein D., Et al., BMP-7 induces adult human pancreatic exocrine-to-endocrine conversion, Diabetes, 64, 12, pp. 4123-4134, (2015)
  88. Balboa D., Et al., Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells, Nat Biotechnol, pp. 1-14, (2022)
  89. Nair G.G., Emmanuel S.T., Matthias H., Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy, Nat Rev Endocrinol, 16, 9, pp. 506-518, (2020)
  90. Lumelsky N., Et al., Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets, Science, 292, 5520, pp. 1389-1394, (2001)
  91. Kahan B.W., Et al., Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation, Diabetes, 52, 8, pp. 2016-2024, (2003)
  92. Assady S., Et al., Insulin production by human embryonic stem cells, Diabetes, 50, 8, pp. 1691-1697, (2001)
  93. Schroeder I.S., Et al., Differentiation of mouse embryonic stem cells to insulin-producing cells, Nat Protoc, 1, 2, pp. 495-507, (2006)
  94. Zakrzewski W., Dobrzynski M., Szymonowicz M., Et al., Stem cells: past, present, and future, Stem Cell Res Ther, 10, (2019)
  95. Alvarez-Dominguez J.R., Melton D.A., Cell maturation: hallmarks, triggers, and manipulation, Cell, 185, 2, pp. 235-249, (2022)
  96. Zhang Q., Gonelle-Gispert C., Li Y., Geng Z., Gerber-Lemaire S., Wang Y., Et al., Islet encapsulation: new developments for the treatment of type 1 diabetes, Front Immunol, 13, (2022)
  97. Chang T.M., Semipermeable microcapsules, Science, 146, 3643, pp. 524-525, (1964)
  98. Wandzioch E., Zaret K.S., Dynamic signaling network for the specification of embryonic pancreas and liver progenitors, Science, 324, 5935, pp. 1707-1710, (2009)
  99. Orive G., Hernandez R.M., Gascon A.R., Calafiore R., Chang T.M.S., De Vos P., Et al., History, challenges and perspectives of cell microencapsulation, Trends Biotechnol, 22, 2, pp. 87-92, (2004)
  100. Paredes Juarez G.A., Spasojevic M., Faas M.M., de Vos P., Immunological and technical considerations in application of alginate-based microencapsulation systems, Front Bioeng Biotechnol, 2, (2014)
  101. de Vos P., Faas M.M., Strand B., Calafiore R., Alginate-based microcapsules for immunoisolation of pancreatic islets, Biomaterials, 27, 32, pp. 5603-5617, (2006)
  102. de Vos P., Historical perspectives and current challenges in cell microencapsulation, Cell microencapsulation, pp. 3-21, (2017)
  103. Van Schilfgaarde R., De Vos P., Factors influencing the properties and performance of microcapsules for immunoprotection of pancreatic islets, J Mol Med, 77, 1, pp. 199-205, (1999)
  104. Maria-Engler S.S., Et al., Microencapsulation and tissue engineering as an alternative treatment of diabetes, Braz J Med Biol Res, 34, 6, pp. 691-697, (2001)
  105. Mares-Guia T.R., Campos-Lisboa A.C.V., Campanha-Rodrigues A.L., Grazioli G., Labriola L., Sogayar M.C., Composição biopolimérica para o encapsulamento de células, método de produção de um composto biopolimérico para o encapsulamento de células, método para promover a citoproteção de células e uso de um composto bioplimérico para o encapsulamento de células.
  106. Cortiella J., Niles J., Cantu A., Brettler A., Pham A., Vargas G., Et al., Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation, Tissue Eng, 16, 8, pp. 2565-2580, (2010)
  107. Llacua L.A., Faas M.M., de Vos P., ECM molecules and their potential contribution to the function of transplanted pancreatic islets, Diabetologia, 61, 6, pp. 1261-1272, (2018)
  108. Smink A.M., de Vos P., Therapeutic strategies for modulating the ECM to improve pancreatic islet function and survival after transplantation, Curr Diab Rep, 18, 7, (2018)
  109. Marquez-Aguirre A.L., Canales-Aguirre A.A., Padilla-Camberos E., Esquivel-Solis H., Diaz-Martinez N.E., Development of the endocrine pancreas and novel strategies for β-cell mass restoration and diabetes therapy, Braz J Med Biol Res, 48, 9, pp. 765-776, (2015)
  110. Nikolova M.P., Chavali M.S., Recent advances in biomaterials for 3D scaffolds: a review, Bioact Mater, 4, pp. 271-292, (2019)
  111. Frantz C., Stewart K.M., Weaver V.M., The ECM at a glance, J Cell Sci, 123, pp. 4195-4200, (2010)
  112. Barkan D., Green J.E., Chambers A.F., ECM: a gatekeeper in the transition from dormancy to metastatic growth, Eur J Cancer, 46, 7, pp. 1181-1188, (2010)
  113. Grande-Allen K.J., Liao J., The heterogeneous biomechanics and mechanobiology of the mitral valve: implications for tissue engineering, Curr Cardiol Rep, 13, 2, pp. 113-120, (2011)
  114. Sellaro T.L., Ranade A., Faulk D.M., McCabe G.P., Dorko K., Badylak S.F., Et al., Maintenance of human hepatocyte function in vitro by liver-derived ECM gels, Tissue Eng, 16, 3, pp. 1075-1082, (2010)
  115. Chen J.D., Wang Y., Chen X., In situ fabrication of nano-hydroxyapatite in a macroporous chitosan scaffold for tissue engineering, J Biomater Sci Polym Ed, 20, 11, pp. 1555-1565, (2009)
  116. Stern M.M., Myers R.L., Hammam N., Stern K.A., Eberli D., Kritchevsky S.B., Et al., The influence of ECM derived from skeletal muscle tissue on the proliferation and differentiation of myogenic progenitor cells ex vivo, Biomaterials, 30, 12, pp. 2393-2399, (2009)
  117. Zhang W., Du A., Liu S., Lv M., Chen S., Research progress in decellularized ECM-derived hydrogels, Regen Ther, 18, pp. 88-96, (2021)
  118. Chakraborty J., Roy S., Ghosh S., Regulation of decellularized matrix mediated immune response, Biomater Sci, 8, 5, pp. 1194-1215, (2020)
  119. Zhang X., Chen X., Hong H., Hu R., Liu J., Liu C., Decellularized ECM scaffolds: recent trends and emerging strategies in tissue engineering, Bioact Mater, 10, pp. 15-31, (2021)
  120. Stanger B.Z., Hebrok M., Control of cell identity in pancreas development and regeneration, Gastroenterology, 144, 6, pp. 1170-1179, (2013)
  121. Valentin J.E., Turner N.J., Gilbert T.W., Badylak S.F., Functional skeletal muscle formation with a biologic scaffold, Biomaterials, 31, 29, pp. 7475-7484, (2010)
  122. Williams L.E., Vannemreddy P.S., Watson K.S., Slavin K.V., The need in dural graft suturing in Chiari I malformation decompression: a prospective, single-blind, randomized trial comparing sutured and sutureless duraplasty materials, Surg Neurol Int, 4, (2013)
  123. Johnson W., Inamasu J., Yantzer B., Papangelou C., Guiot B., Comparative in vitro biomechanical evaluation of two soft tissue defect products, J Biomed Mater Res B Appl Biomater, (2007)
  124. Ryssel H., Radu C.A., Germann G., Otte M., Gazyakan E., Single-stage Matriderm(R) and skin grafting as an alternative reconstruction in high-voltage injuries, Int Wound J, 7, 5, pp. 385-392, (2010)
  125. Terino E.O., Alloderm acellular dermal graft: applications in aesthetic soft-tissue augmentation, Clin Plast Surg, 28, 1, pp. 83-99, (2001)
  126. Coccolini F., Lotti M., Bertoli P., Manfredi R., Piazzalunga D., Magnone S., Et al., Thoracic wall reconstruction with Collamend® in trauma: report of a case and review of the literature, World J Emerg Surg, 7, 1, (2012)
  127. Brown J.W., Ruzmetov M., Eltayeb O., Rodefeld M.D., Turrentine M.W., Performance of SynerGraft decellularized pulmonary homograft in patients undergoing a Ross procedure, Ann Thorac Surg, 91, 2, pp. 416-422, (2011)
  128. Brown J.W., Elkins R.C., Clarke D.R., Tweddell J.S., Huddleston C.B., Doty J.R., Et al., Performance of the CryoValve SG human decellularized pulmonary valve in 342 patients relative to the conventional CryoValve at a mean follow-up of four years, J Thorac Cardiovasc Surg, 139, 2, pp. 339-348, (2010)
  129. Kim J.S., Kaminsky A.J., Summitt J.B., Thayer W.P., New innovations for deep partial-thickness burn treatment with ACell MatriStem matrix, Adv Wound Care, 5, 12, pp. 546-552, (2016)
  130. Mosala Nezhad Z., Poncelet A., de Kerchove L., Gianello P., Fervaille C., El Khoury G., Small intestinal submucosa ECM (CorMatrix(R)) in cardiovascular surgery: a systematic review, Interact Cardiovasc Thorac Surg, 22, 6, pp. 839-850, (2016)
  131. Solar M., Et al., Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth, Dev Cell, 17, 6, pp. 849-860, (2009)
  132. Armitage S., Seman E.I., Keirse M.J.N.C., Use of surgisis for treatment of anterior and posterior vaginal prolapse, Obstet Gynecol Int, 2012, (2012)
  133. Crapo P.M., Gilbert T.W., Badylak S.F., An overview of tissue and whole organ decellularization processes, Biomaterials, 32, 12, pp. 3233-3243, (2011)
  134. Hernandez M.J., Yakutis G.E., Zelus E.I., Hill R.C., Dzieciatkowska M., Hansen K.C., Et al., Manufacturing considerations for producing and assessing decellularized ECM hydrogels, Methods, 171, pp. 20-27, (2020)
  135. Wang X., Li Y.G., Du Y., Zhu J.Y., Li Z., The research of acellular pancreatic bioscaffold as a natural 3-dimensional platform in vitro, Pancreas, 47, 8, pp. 1040-1049, (2018)
  136. Sackett S.D., Tremmel D.M., Ma F., Feeney A.K., Maguire R.M., Brown M.E., Et al., ECM scaffold and hydrogel derived from decellularized and delipidized human pancreas, Sci Rep, 8, 1, (2018)
  137. Nakayama-Iwatsuki K., Yanagisawa K., Tanaka D., Hirabayashi M., Negishi J., Hochi S., Acellular matrix derived from rat liver improves the functionality of rat pancreatic islets before or after vitrification, Cryobiology, 100, pp. 90-95, (2021)
  138. Mirmalek-Sani S.H., Orlando G., McQuilling J.P., Pareta R., Mack D.L., Salvatori M., Et al., Porcine pancreas ECM as a platform for endocrine pancreas bioengineering, Biomaterials, 34, 22, pp. 5488-5495, (2013)
  139. Wan J., Et al., Culture of iPSCs derived pancreatic beta-like cells in vitro using decellularized pancreatic scaffolds: a preliminary trial, BioMed Res Int, 2017, (2017)
  140. Elebring E., Et al., Cold-perfusion decellularization of whole-organ porcine pancreas supports human fetal pancreatic cell attachment and expression of endocrine and exocrine markers, J Tissue Eng, 8, (2017)
  141. Chaimov D., Et al., Innovative encapsulation platform based on pancreatic ECM achieve substantial insulin delivery, J Contr Release: Off J Control Release Soc, 257, pp. 91-101, (2017)
  142. Zhou Q., Et al., A multipotent progenitor domain guides pancreatic organogenesis, Dev Cell, 13, 1, pp. 103-114, (2007)
  143. Guo Y., Et al., Vascularization of pancreatic decellularized scaffold with endothelial progenitor cells, J Artif Organs: Off J Japan Soc Artif Organs, 21, 2, pp. 230-237, (2018)
  144. Peloso A., Urbani L., Cravedi P., Katari R., Maghsoudlou P., Fallas M.E., Et al., The human pancreas as a source of protolerogenic ECM scaffold for a new-generation bioartificial endocrine pancreas, Ann Surg, 264, 1, pp. 169-179, (2016)
  145. Pastore I., Assi E., Ben Nasr M., Bolla A.M., Maestroni A., Usuelli V., Et al., Hematopoietic stem cells in type 1 diabetes, Front Immunol, 12, (2021)
  146. Voltarelli Julio C., Transplante de células-tronco hematopoéticas no diabete melito do tipo I, Rev Bras Hematol Hemoter, 26, 1, pp. 43-45, (2004)
  147. Voltarelli J.C., Couri C.E., Stracieri A.B., Oliveira M.C., Moraes D.A., Pieroni F., Et al., Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus, JAMA, 297, 14, pp. 1568-1576, (2007)
  148. Bottega A., Serafin M.B., Krause L.M.F., Células-tronco adultas no tratamento do diabetes mellitus tipo I: uma revisão de literatura, Revista Saúde (Sta. Maria), 44, 1, pp. 1-9, (2018)
  149. Couri E.B., Voltarelli J.C., Potential role of stem cell therapy in type 1 diabetes mellitus, Arq Bras Endocrinol Metabol, 52, 2, pp. 407-415, (2008)
  150. Haller M.J., Wasserfall C.H., McGrail K.M., Cintron M., Brusko T.M., Wingard J.R., Et al., Autologous umbilical cord blood transfusion in very young children with type 1 diabetes, Diabetes Care, 32, 11, pp. 2041-2046, (2009)
  151. Haller M.J., Wasserfall C.H., Hulme M.A., Cintron M., Brusko T.M., McGrail K.M., Et al., Autologous umbilical cord blood transfusion in young children with type 1 diabetes fails to preserve C-peptide, Diabetes Care, 34, 12, pp. 2567-2569, (2011)
  152. Vanikar A.V., Dave S.D., Thakkar U.G., Trived H.L., Cotransplantation of adipose tissue derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin dependent diabetes mellitus, Stem cells int, 10, pp. 1-5.13, (2010)
  153. Jensen J., Et al., Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation, Diabetes, 49, 2, pp. 163-176, (2000)
  154. Zhao Z., Jiang Z., Zhao T., Ye M., Hu C., Yin Z., Et al., Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells, BMC Med, 10, 3, pp. 1-11, (2012)
  155. Ben Nasr M., Robbins D., Parone P., Usuelli V., Tacke R., Seelam A.J., Et al., Pharmacologically enhanced regulatory hematopoietic stem cells revert experimental autoimmune diabetes and mitigate other autoimmune disorders, J Immunol, 208, 7, pp. 1554-1565, (2022)
  156. Banting F.G., Best C.H., The internal secretion of the pancreas, J Lab Clin Med, 7, pp. 256-271, (1922)
  157. Chen S., Du K., Zou C., Current progress in stem cell therapy for type 1 diabetes mellitus, Stem Cell Res Ther, 11, (2020)
  158. Lancaster M.A., Knoblich J.A., Organogenesis in a dish: modeling development and disease using organoid technologies, Science, 345, 6194, (2014)
  159. Kim Y., Et al., Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo, Sci Rep, 6, pp. 35145-35156, (2016)
  160. Wang W., Jin S., Ye K., Development of islet organoids from H9 human embryonic stem cells in biomimetic 3D scaffolds, Stem Cell Dev, 26, 6, pp. 394-404, (2017)
  161. Kobayashi T., Et al., Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells, Cell, 142, 5, pp. 787-799, (2010)
  162. Yamaguchi T., Et al., Interspecies organogenesis generates autologous functional islets, Nature, 542, 7640, pp. 191-196, (2017)
  163. Matsunari H., Et al., Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs, Proc Natl Acad Sci U S A, 110, 12, pp. 4557-4562, (2013)
  164. Apelqvist A., Et al., Notch signalling controls pancreatic cell differentiation, Nature, 400, 6747, pp. 877-881, (1999)
  165. Hwang G., Et al., Efficacies of stem cell therapies for functional improvement of the beta cell in patients with diabetes: a systematic review of controlled clinical trials, Int J Stem Cells, 12, 2, pp. 195-205, (2019)
  166. Gan J., Wang Y., Zhou X., Stem cell transplantation for the treatment of patients with type 1 diabetes mellitus: a meta-analysis, Exp Ther Med, 16, 6, pp. 4479-4492, (2018)
  167. Li Y., Wang F., Liang H., Tang D., Huang M., Zhao J., Et al., Efficacy of mesenchymal stem cell transplantation therapy for type 1 and type 2 diabetes mellitus: a meta-analysis, Stem Cell Res Ther, 12, 1, (2021)
  168. He J., Kong D., Yang Z., Guo R., Amponsah A.E., Feng B., Et al., Clinical efficacy on glycemic control and safety of mesenchymal stem cells in patients with diabetes mellitus: systematic review and meta-analysis of RCT data, PLoS One, 16, 3, (2021)
  169. Zhang Y., Chen W., Feng B., Cao H., The clinical efficacy and safety of stem cell therapy for diabetes mellitus: a systematic review and meta-analysis, Aging Dis, 11, 1, pp. 141-153, (2020)
  170. Sun S.Y., Gao Y., Liu G.J., Li Y.K., Gao W., Ran X.W., Efficacy and safety of stem cell therapy for T1DM: an updated systematic review and meta-analysis, J Diabetes Res, 2020, (2020)
  171. Heremans Y., Et al., Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3, J Cell Biol, 159, 2, pp. 303-312, (2002)
  172. Georgia S., Et al., p57 and Hes1 coordinate cell cycle exit with self-renewal of pancreatic progenitors, Dev Biol, 298, 1, pp. 22-31, (2006)
  173. Ross M.H., Pawlina W., Histologia: texto e atlas, em correlação com Biologia celular e molecular, (2012)
  174. Gartner L.P., Hiatt J.L., Tratado de Histologia em cores, (2007)
  175. Zhu Y., Liu Q., Zhou Z., Et al., PDX1, neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration, Stem Cell Res Ther, 8, (2017)
  176. Dassaye R., Naidoo S., Cerf M.E., Transcription factor regulation of pancreatic organogenesis, differentiation and maturation, Islets, 8, 1, pp. 13-34, (2016)