Exercise Induced-Cytokines Response in Marathon Runners: Role of ACE I/D and BDKRB2+9/-9 Polymorphisms

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
SIERRA, Ana Paula Renno
GALAN, Bryan Steve Martinez
SOUSA, Cesar Augustus Zocoler de
MENEZES, Duane Cardoso de
BRANQUINHO, Jessica Lais de Oliveira
NEVES, Raquel Leao
ARATA, Julia Galanakis
BITTENCOURT, Clarissa Azevedo
Citação
FRONTIERS IN PHYSIOLOGY, v.13, article ID 919544, 13p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) have a different site of interaction and modulate vascular tone and inflammatory response as well on exercise adaptation, which is modulated by exercise-induced cytokines. The aim of the study was to evaluate the role of ACE I/D and BDKRB2 +9/-9 polymorphism on exercise-induced cytokine response. Seventy-four male marathon finishers, aged 30 to 55 years, participated in this study. Plasma levels of exercise-induced cytokines were determined 24 h before, immediately after, and 24 h and 72 h after the Sao Paulo International Marathon. Plasma concentrations of MCP-1, IL-6 and FGF-21 increased after marathon in all genotypes of BDKRB2. IL-10, FSTL and BDNF increased significantly after marathon in the genotypes with the presence of the -9 allele. FSTL and BDNF concentrations were higher in the -9/-9 genotype compared to the +9/+9 genotype before (p = 0.006) and after the race (p = 0.023), respectively. Apelin, IL-15, musclin and myostatin concentrations were significantly reduced after the race only in the presence of -9 allele. Marathon increased plasma concentrations of MCP1, IL-6, BDNF and FGF-21 in all genotypes of ACE I/D polymorphism. Plasma concentrations of IL-8 and MIP-1alpha before the race (p = 0.015 and p = 0.031, respectively), of MIP-1alpha and IL-10 after the race (p = 0.033 and p = 0.047, respectively) and VEGF 72 h after the race (p = 0.018) were lower in II homozygotes compared to runners with the presence of D allele. One day after the race we also observed lower levels of MIP-1alpha in runners with II homozygotes compared to DD homozygotes (p = 0.026). Before the marathon race myostatin concentrations were higher in DD compared to II genotypes (p = 0.009). Myostatin, musclin, IL-15, IL-6 and apelin levels decreased after race in genotypes with the presence of D allele. After the race ACE activity was negatively correlated with MCP1 (r = -56, p < 0.016) and positively correlated with IL-8, IL-10 and MIP1-alpha (r = 0.72, p < 0.0007, r = 0.72, p < 0.0007, r = 0.47, p < 0.048, respectively). The runners with the -9/-9 genotype have greater response in exercise-induced cytokines related to muscle repair and cardioprotection indicating that BDKRB2 participate on exercise adaptations and runners with DD genotype have greater inflammatory response as well as ACE activity was positively correlated with inflammatory mediators. DD homozygotes also had higher myostatin levels which modulates protein homeostasis.
Palavras-chave
angiotensin-converting enzyme, endurance exercise, myokines, bradykinin B2 receptor, polymorphism
Referências
  1. Alvarez R, 2000, EUR J APPL PHYSIOL, V82, P117, DOI 10.1007/s004210050660
  2. Alves CR, 2013, PHYSIOL GENOMICS, V45, P487, DOI 10.1152/physiolgenomics.00065.2012
  3. Amir O, 2007, EXP PHYSIOL, V92, P881, DOI 10.1113/expphysiol.2007.038711
  4. Arazi H, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.747200
  5. Baumert P, 2016, EUR J APPL PHYSIOL, V116, P1595, DOI 10.1007/s00421-016-3411-1
  6. Bay ML, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.567881
  7. Bekassy Z, 2022, NAT REV IMMUNOL, V22, P411, DOI 10.1038/s41577-021-00634-8
  8. Bellamy LM, 2010, AM J PHYSIOL-CELL PH, V299, pC1402, DOI 10.1152/ajpcell.00306.2010
  9. Cabello-Verrugio C, 2015, MED RES REV, V35, P437, DOI 10.1002/med.21343
  10. Cefis M, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-021-03740-8
  11. Chen MM, 2021, FRONT CELL DEV BIOL, V9, DOI 10.3389/fcell.2021.785712
  12. Clow C, 2010, MOL BIOL CELL, V21, P2182, DOI 10.1091/mbc.E10-02-0154
  13. Delezie J, 2019, P NATL ACAD SCI USA, V116, P16111, DOI 10.1073/pnas.1900544116
  14. Di Mauro M, 2010, MED SCI SPORT EXER, V42, P915, DOI 10.1249/MSS.0b013e3181c29e79
  15. Di Rosa MC, 2021, LIFE-BASEL, V11, DOI 10.3390/life11111256
  16. Dietze GJ, 2008, J RENIN-ANGIO-ALDO S, V9, P75, DOI 10.3317/jraas.2008.011
  17. Domin R, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18031261
  18. Erskine RM, 2014, SCAND J MED SCI SPOR, V24, P642, DOI 10.1111/sms.12055
  19. Evangelista FS, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.561403
  20. Fatini C, 2000, MED SCI SPORT EXER, V32, P1868, DOI 10.1097/00005768-200011000-00008
  21. Frantz ED, 2018, CLIN SCI, V132, P1487, DOI 10.1042/CS20180276
  22. Freire IV, 2015, J RENIN-ANGIO-ALDO S, V16, P1251, DOI 10.1177/1470320314540733
  23. Hang PZ, 2021, LIFE-BASEL, V11, DOI 10.3390/life11010070
  24. Hoffmann C, 2017, CSH PERSPECT MED, V7, DOI 10.1101/cshperspect.a029793
  25. John R, 2020, INDIAN J ORTHOP, V54, P256, DOI 10.1007/s43465-020-00056-z
  26. Kasikcioglu E, 2004, HEART VESSELS, V19, P287, DOI 10.1007/s00380-004-0783-7
  27. Lau J, 2020, PHARMACEUTICALS-BASE, V13, DOI 10.3390/ph13080199
  28. Laurens C, 2020, FRONT PHYSIOL, V11, DOI 10.3389/fphys.2020.00091
  29. Lee JH, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.00042
  30. Massidda M, 2020, J SPORT SCI, V38, P2423, DOI 10.1080/02640414.2020.1787683
  31. Matthews VB, 2009, DIABETOLOGIA, V52, P1409, DOI 10.1007/s00125-009-1364-1
  32. Molina T, 2021, OPEN BIOL, V11, DOI 10.1098/rsob.210110
  33. Mousavi K, 2006, J NEUROSCI, V26, P5739, DOI 10.1523/JNEUROSCI.5398-05.2006
  34. NEEPER SA, 1995, NATURE, V373, P109, DOI 10.1038/373109a0
  35. Omura T, 2005, J PERIPHER NERV SYST, V10, P293, DOI 10.1111/j.1085-9489.2005.10307.x
  36. Papadimitriou ID, 2018, BMC GENOMICS, V19, DOI 10.1186/s12864-017-4412-0
  37. Pedersen BK, 2009, EXP PHYSIOL, V94, P1153, DOI 10.1113/expphysiol.2009.048561
  38. Piccirillo R, 2019, FRONT PHYSIOL, V10, DOI 10.3389/fphys.2019.00287
  39. Pritchett K, 2009, APPL PHYSIOL NUTR ME, V34, P1017, DOI 10.1139/H09-104
  40. Rabinovich-Nikitin I, 2018, CIRC RES, V123, P1264, DOI 10.1161/CIRCRESAHA.118.314129
  41. Rasmussen P, 2009, EXP PHYSIOL, V94, P1062, DOI 10.1113/expphysiol.2009.048512
  42. Sierra APR, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00984
  43. RIGAT B, 1990, J CLIN INVEST, V86, P1343, DOI 10.1172/JCI114844
  44. Safdar A, 2018, CSH PERSPECT MED, V8, DOI 10.1101/cshperspect.a029827
  45. Severinsen MCK, 2020, ENDOCR REV, V41, DOI 10.1210/endrev/bnaa016
  46. Su JB, 2014, J RENIN-ANGIO-ALDO S, V15, P319, DOI 10.1177/1470320312474854
  47. Szabo MR, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21249382
  48. Thompson PD, 2013, CURR SPORT MED REP, V12, P215, DOI 10.1249/JSR.0b013e31829a68cf
  49. Tsianos GI, 2010, J APPL PHYSIOL, V108, P567, DOI 10.1152/japplphysiol.00780.2009
  50. Valdivieso P, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00993
  51. Varillas-Delgado D, 2021, GENES-BASEL, V12, DOI 10.3390/genes12081230
  52. Vaughan D, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149046
  53. Vaughan D, 2013, EUR J APPL PHYSIOL, V113, P1719, DOI 10.1007/s00421-012-2583-6
  54. Wang JS, 2019, J ENDOCR SOC, V3, P403, DOI 10.1210/js.2018-00359
  55. Whitham M, 2016, NAT REV DRUG DISCOV, V15, P719, DOI 10.1038/nrd.2016.153
  56. Winbanks CE, 2012, J CELL BIOL, V197, P997, DOI 10.1083/jcb.201109091
  57. Yamamoto K, 2020, CLIN SCI, V134, P3047, DOI 10.1042/CS20200486
  58. de Sousa CAZ, 2021, FRONT PHYSIOL, V12, DOI 10.3389/fphys.2021.752144