Gene expression profile of renal cell carcinomas after neoadjuvant treatment with sunitinib: new pathways revealed

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
WICHTIG PUBLISHING
Citação
INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, v.32, n.2, p.E210-E217, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: In renal cell carcinoma (RCC) of the clear cell type, inactivity of the VHL gene induces overexpression of HIF1 alpha and its targets, the tyrosine kinase receptors, promoting RCC development and progression. The discovery of tyrosine kinase inhibitors (TKIs) changed the treatment of these tumors. Other molecular pathways involved in the TKI mechanisms of action have not been described in the literature. The aim of our study was to elucidate alternative mechanisms of action of sunitinib in tumor tissue after neoadjuvant treatment of RCC. Methods: The gene expression profile was accessed using microarray (Affymetrix Human Genome U133 Plus 2.0 platform) and frozen RCC tissues collected from 5 patients with locally advanced non-metastatic tumors who underwent nephrectomy after being treated with 2 cycles of neoadjuvant sunitinib. The results were compared with matched controls comprising 6 patients with no neoadjuvant intervention. Results: There was underexpression of the majority of genes after sunitinib treatment. The lower expression levels of IGFBP1, CCL20, CXCL6 and FGB were confirmed by qRT-PCR in all cases. The downregulation of gene expression leads us to search for methylation as a mechanism of action of the TKI. IGFBP1 was shown to be methylated by methylation-sensitive high-resolution melting technique. Conclusions: The ultimate genetic effects of sunitinib may explain its actions as an antitumor drug that apparently suppresses the expression of important genes related to cell survival, adhesion, invasion and immunomodulation. The methylation of gene promoters was shown to be part of the mechanism of action of this class of drugs.
Palavras-chave
Gene expression, Mechanism of action, Methylation, Renal cell carcinoma, Sunitinib, Tyrosine kinase inhibitor
Referências
  1. Baeriswyl V, 2009, SEMIN CANCER BIOL, V19, P329, DOI 10.1016/j.semcancer.2009.05.003
  2. BASHKIN P, 1989, BIOCHEMISTRY-US, V28, P1737, DOI 10.1021/bi00430a047
  3. Beider K, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005125
  4. Bergers G, 2000, NAT CELL BIOL, V2, P737
  5. Brown PD, 1999, APMIS, V107, P174
  6. Carmeliet P, 2003, NAT MED, V9, P653, DOI 10.1038/nm0603-653
  7. Chapman DW, 2014, EJNMMI RES, V4, DOI 10.1186/s13550-014-0027-5
  8. Chen J, 2014, HEPATO-GASTROENTEROL, V61, P518, DOI 10.5754/hge12954
  9. Cheng XS, 2014, CANCER LETT, V348, P77, DOI 10.1016/j.canlet.2014.03.008
  10. Choueiri TK, 2015, NEW ENGL J MED, V373, P1814, DOI 10.1056/NEJMoa1510016
  11. Conway EM, 2001, CARDIOVASC RES, V49, P507, DOI 10.1016/S0008-6363(00)00281-9
  12. Cross MJ, 2003, TRENDS BIOCHEM SCI, V28, P488, DOI 10.1016/S0968-0004(03)00193-2
  13. Du DS, 2014, INT J MOL SCI, V15, P6441, DOI 10.3390/ijms15046441
  14. Escudier B, 2007, LANCET, V370, P2103, DOI 10.1016/S0140-6736(07)61904-7
  15. Faivre S, 2007, NAT REV DRUG DISCOV, V6, P734, DOI 10.1038/nrd2380
  16. Fedorko M, 2016, INT J BIOL MARKER, V31, pE26, DOI 10.5301/jbm.5000174
  17. FOLKMAN J, 1987, SCIENCE, V235, P442, DOI 10.1126/science.2432664
  18. Gijsbers K, 2005, EXP CELL RES, V303, P331, DOI 10.1016/j.yexer.2004.09.027
  19. Hanahan D, 2000, CELL, V100, P57, DOI 10.1016/S0092-8674(00)81683-9
  20. Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013
  21. Ibanez de Caceres I, 2006, CANCER RES, V66, P5021, DOI 10.1158/0008-5472.CAN-05-3365
  22. Ingber D E, 1987, Prog Clin Biol Res, V249, P273
  23. Jubb AM, 2006, NAT REV CANCER, V6, P626, DOI 10.1038/nrc1946
  24. Kim J, 2012, EPIGENETICS-US, V7, P191, DOI 10.4161/epi.7.2.18973
  25. Kim WY, 2004, J CLIN ONCOL, V22, P4991, DOI 10.1200/JCO.2004.05.061
  26. Kirshberg S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024856
  27. LINEHAN WM, 1995, JAMA-J AM MED ASSOC, V273, P564
  28. McCawley LJ, 2001, CURR BIOL, V11, pR25, DOI 10.1016/S0960-9822(00)00038-5
  29. Morimoto AM, 2004, ONCOGENE, V23, P1618, DOI 10.1038/sj.onc.1207268
  30. Motzer RJ, 2007, NEW ENGL J MED, V356, P115, DOI 10.1056/NEJMoa065044
  31. Motzer RJ, 2013, NEW ENGL J MED, V369, P722, DOI 10.1056/NEJMoa1303989
  32. O'Farrell AM, 2003, BLOOD, V101, P3597, DOI 10.1182/blood-2002-07-2307
  33. Oldham KA, 2012, EUR UROL, V61, P385, DOI 10.1016/j.eururo.2011.10.035
  34. Perez-Gracia JL, 2009, BRIT J CANCER, V101, P1876, DOI 10.1038/sj.bjc.6605409
  35. Qiao ZK, 2013, WORLD J SURG ONCOL, V11, DOI 10.1186/1477-7819-11-1
  36. Rice BW, 2001, J BIOMED OPT, V6, P432, DOI 10.1117/1.1413210
  37. Rini BI, 2008, J CLIN ONCOL, V26, P5422, DOI 10.1200/JCO.2008.16.9847
  38. Rubie C, 2010, J TRANSL MED, V8, DOI 10.1186/1479-5876-8-45
  39. Sato A, 2013, INT J ONCOL, V43, P1441, DOI 10.3892/ijo.2013.2073
  40. Schlessinger J, 2000, CELL, V103, P211, DOI 10.1016/S0092-8674(00)00114-8
  41. Schueneman AJ, 2003, CANCER RES, V63, P4009
  42. Schveigert D, 2013, TUMORI, V99, P523, DOI 10.1700/1361.15105
  43. Seferovic MD, 2009, ENDOCRINOLOGY, V150, P220, DOI 10.1210/en.2008-0657
  44. Semenza GL, 2009, SEMIN CANCER BIOL, V19, P12, DOI 10.1016/j.semcancer.2008.11.009
  45. Sternberg CN, 2010, J CLIN ONCOL, V28, P1061, DOI 10.1200/JCO.2009.23.9764
  46. Tsaur I, 2011, CANCER BIOMARK, V10, P195, DOI 10.3233/CBM-2012-0247
  47. Verbeke H, 2011, CANCER LETT, V302, P54, DOI 10.1016/j.canlet.2010.12.013
  48. Wary Kishore K, 2003, Mol Cancer, V2, P25, DOI 10.1186/1476-4598-2-25
  49. Wojdacz TK, 2009, EPIGENETICS, V4, P231
  50. Xiao G, 2015, ONCOTARGET, V6, P14165
  51. Zlotnik A, 2000, IMMUNITY, V12, P121, DOI 10.1016/S1074-7613(00)80165-X