Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: A prospective pilot study

Carregando...
Imagem de Miniatura
Citações na Scopus
105
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Citação
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, v.28, n.4, p.369-384, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and Aim: The aim of the study was to compare the gut microbiomes from obese and lean patients with or without NASH to outline phenotypic differences. Methods and Results: We performed a cross-sectional pilot study comprising biopsy-proven NASH patients grouped according to BMI. Microbiome DNA was extracted from stool samples, and PCR amplification was performed using primers for the V4 region of the 16S rRNA gene. The amplicons were sequenced using the Ion PGM Torrent platform, and data were analyzed using QIIME software. Macronutrient consumption was analyzed by a 7-day food record. Liver fibrosis >= F2 was associated with increased abundance of Lactobacilli (p = 0.0007). NASH patients showed differences in Faecalibacterium, Ruminococcus, Lactobacillus and Bifidobacterium abundance compared with the control group. Lean NASH patients had a 3-fold lower abundance of Faecalibacterium and Ruminococcus (p = 0.004), obese NASH patients were enriched in Lactobacilli (p = 0.002), and overweight NASH patients had reduced Bifidobacterium (p = 0.018). Moreover, lean NASH patients showed a deficiency in Lactobacillus compared with overweight and obese NASH patients. This group also appeared similar to the control group with regard to gut microbiome alpha diversity. Although there were qualitative differences between lean NASH and overweight/obese NASH, they were not statistically significant (p = 0.618). The study limitations included a small sample size, a food questionnaire that collected only qualitative and semi-quantitative data, and variations in group gender composition that may influence differences in FXR signaling, bile acids metabolism and the composition of gut microbiota. Conclusion: Our preliminary finding of a different pathogenetic process in lean NASH patients needs to be confirmed by larger studies, including those with patient populations stratified by sex and dietary habits.
Palavras-chave
Gut microbiome, NASH, Lean, Obese, Overweight
Referências
  1. Al-Jashamy K, 2010, ASIAN PAC J CANCER P, V11, P1765
  2. Baba CS, 2006, J GASTROEN HEPATOL, V21, P191, DOI 10.1111/j.1440-1746.2005.04233.x
  3. Basaranoglu M, 2013, WORLD J GASTROENTERO, V19, P1158, DOI 10.3748/wjg.v19.i8.1158
  4. Bellentani S, 2008, HEPATOLOGY, V47, P746, DOI 10.1002/hep.22009
  5. Betrapally NS, 2016, GASTROENTEROLOGY, V150, P1745, DOI 10.1053/j.gastro.2016.02.073
  6. Boursier J, 2016, CLIN LIVER DIS, V20, P263, DOI 10.1016/j.cld.2015.10.012
  7. Boursier J, 2016, HEPATOLOGY, V63, P764, DOI 10.1002/hep.28356
  8. Brahe LK, 2013, OBES REV, V14, P950, DOI 10.1111/obr.12068
  9. Cani PD, 2008, DIABETES, V57, P1470, DOI 10.2337/db07-1403
  10. Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303
  11. de Wit N, 2012, AM J PHYSIOL-GASTR L, V303, pG589, DOI 10.1152/ajpgi.00488.2011
  12. Del Chierico F, 2017, HEPATOLOGY, V65, P451, DOI [10.1002/hep.28572/suppinfo, 10.1002/hep.28572]
  13. Duncan SH, 2009, ENVIRON MICROBIOL, V11, P2112, DOI 10.1111/j.1462-2920.2009.01931.x
  14. Jiang WW, 2015, SCI REP-UK, V5, DOI 10.1038/srep08096
  15. Jumpertz R, 2011, AM J CLIN NUTR, V94, P58, DOI 10.3945/ajcn.110.010132
  16. Larsen N, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009085
  17. Leung C, 2016, NAT REV GASTRO HEPAT, V13, P412, DOI 10.1038/nrgastro.2016.85
  18. Lin H, 2016, SCI REP-UK, V6, DOI 10.1038/srep21618
  19. Loomba R, 2013, NAT REV GASTRO HEPAT, V10, P686, DOI 10.1038/nrgastro.2013.171
  20. Macfarlane GT, 2011, J CLIN GASTROENTEROL, V45, pS120, DOI 10.1097/MCG.0b013e31822fecfe
  21. Machado MV, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17040481
  22. Manti S, 2014, HEPAT MON, V14, DOI 10.5812/hepatmon.17641
  23. Margariti E, 2012, J GASTROENTEROL, V25, P45
  24. Miquel S, 2015, MBIO, V6, DOI 10.1128/mBio.00300-15
  25. Mosca A, 2017, J HEPATOL, V66, P1031, DOI 10.1016/j.jhep.2016.12.025
  26. Murphy EF, 2013, GUT, V62, P220, DOI 10.1136/gutjnl-2011-300705
  27. Neuschwander-Tetri BA, 2003, HEPATOLOGY, V37, P1202, DOI 10.1053/jhep.2003.50193
  28. Org E, 2016, GUT MICROBES, V7, P313, DOI 10.1080/19490976.2016.1203502
  29. Prorok-Hamon M, 2014, GUT, V63, P761, DOI 10.1136/gutjnl-2013-304739
  30. Qin JJ, 2012, NATURE, V490, P55, DOI 10.1038/nature11450
  31. Raman M, 2013, CLIN GASTROENTEROL H, V11, P868, DOI 10.1016/j.cgh.2013.02.015
  32. Savard C, 2013, HEPATOLOGY, V57, P81, DOI 10.1002/hep.25789
  33. Schnabl B, 2014, GASTROENTEROLOGY, V146, P1513, DOI 10.1053/j.gastro.2014.01.020
  34. Scott KP, 2014, FEMS MICROBIOL ECOL, V87, P30, DOI 10.1111/1574-6941.12186
  35. Sheng LL, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01576-9
  36. Trottier J, 2011, CLIN PHARMACOL THER, V90, P279, DOI 10.1038/clpt.2011.124
  37. Turnbaugh PJ, 2006, NATURE, V444, P1027, DOI 10.1038/nature05414
  38. Turnbaugh PJ, 2009, NATURE, V457, P480, DOI 10.1038/nature07540
  39. Vrieze A, 2012, GASTROENTEROLOGY, V143, P913, DOI 10.1053/j.gastro.2012.06.031
  40. Wiseman M, 2008, P NUTR SOC, V67, P253, DOI 10.1017/S002966510800712X
  41. Wong RJ, 2014, HEPATOLOGY, V59, P2188, DOI 10.1002/hep.26986
  42. Wong VWS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062885
  43. Zhu LX, 2013, HEPATOLOGY, V57, P601, DOI 10.1002/hep.26093