Respiratory viruses and postoperative hemodynamics in patients with unrestrictive congenital cardiac communications: a prospective cohort study

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Citação
EUROPEAN JOURNAL OF MEDICAL RESEARCH, v.28, n.1, article ID 38, 16p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundPulmonary vascular abnormalities pose a risk for severe life-threatening hemodynamic disturbances following surgical repair of congenital cardiac communications (CCCs). In the distal lung, small airways and vessels share a common microenvironment, where biological crosstalks take place. Because respiratory cells infected by viruses express a number of molecules with potential impact on airway and vascular remodeling, we decided to test the hypothesis that CCC patients carrying viral genomes in the airways might be at a higher risk for pulmonary (and systemic) hemodynamic disturbances postoperatively.MethodsSixty patients were prospectively enrolled (age 11 [7-16] months, median with interquartile range). Preoperative pulmonary/systemic mean arterial pressure ratio (PAP/SAP) was 0.78 (0.63-0.88). The presence or absence of genetic material for respiratory viruses in nasopharyngeal and tracheal aspirates was investigated preoperatively in the absence of respiratory symptoms using real-time polymerase chain reaction (kit for detection of 19 pathogens). Post-cardiopulmonary bypass (CPB) inflammatory reaction was analyzed by measuring serum levels of 36 inflammatory proteins (immunoblotting) 4 h after its termination. Postoperative hemodynamics was assessed using continuous recording of PAP and SAP with calculation of PAP/SAP ratio.ResultsViral genomes were detected in nasopharynx and the trachea in 64% and 38% of patients, respectively. Rhinovirus was the most prevalent agent. The presence of viral genomes in the trachea was associated with an upward shift of postoperative PAP curve (p = 0.011) with a PAP/SAP of 0.44 (0.36-0.50) in patients who were positive versus 0.34 (0.30-0.45) in those who were negative (p = 0.008). The presence or absence of viral genomes in nasopharynx did not help predict postoperative hemodynamics. Postoperative PAP/SAP was positively correlated with post-CPB levels of interleukin-1 receptor antagonist (p = 0.026), macrophage migration inhibitory factor (p = 0.019) and monocyte chemoattractant protein-1 (p = 0.031), particularly in patients with virus-positive tracheal aspirates.ConclusionsPatients with CCCs carrying respiratory viral genomes in lower airways are at a higher risk for postoperative pulmonary hypertension, thus deserving special attention and care. Preoperative exposure to respiratory viruses and post-CPB inflammatory reaction seem to play a combined role in determining the postoperative behavior of the pulmonary circulation.
Palavras-chave
Congenital heart disease, Respiratory viruses, Pulmonary hypertension, Pediatric cardiac surgery, Postoperative inflammatory response, Pediatric intensive care
Referências
  1. Arend WR, 2002, CYTOKINE GROWTH F R, V13, P323, DOI 10.1016/S1359-6101(02)00020-5
  2. Beghetti M., 2011, PEDIAT PULMONARY HYP, P209
  3. Cakebread JA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094010
  4. Chen GL, 2018, J EXP MED, V215, P2175, DOI 10.1084/jem.20171767
  5. Chung JY, 2008, J CLIN VIROL, V43, P223, DOI 10.1016/j.jcv.2008.06.008
  6. Chung KF, 1999, THORAX, V54, P825, DOI 10.1136/thx.54.9.825
  7. Connors TJ, 2016, AM J RESP CELL MOL, V54, P822, DOI 10.1165/rcmb.2015-0297OC
  8. Cox DW, 2014, PAEDIATR RESPIR REV, V15, P268, DOI 10.1016/j.prrv.2014.03.002
  9. D'Alto M, 2012, EUR RESPIR REV, V21, P328, DOI 10.1183/09059180.00004712
  10. Daley E, 2008, J EXP MED, V205, P361, DOI 10.1084/jem.20071008
  11. Ribeiro ZVD, 2010, ARQ BRAS CARDIOL, V94, P592, DOI 10.1590/S0066-782X2010005000042
  12. Delgado-Corcoran C, 2014, PEDIATR CARDIOL, V35, P1387, DOI 10.1007/s00246-014-0941-3
  13. Falcone N, 2001, Rev Esp Anestesiol Reanim, V48, P462
  14. Gaies MG, 2014, PEDIATR CRIT CARE ME, V15, P529, DOI 10.1097/PCC.0000000000000153
  15. Giffin Nick A, 2021, JTCVS Open, V6, P211, DOI 10.1016/j.xjon.2021.03.009
  16. Gorenflo M, 2010, CARDIOLOGY, V116, P10, DOI 10.1159/000313864
  17. Gosemann JH, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0206975
  18. Hansmann G, 2019, J HEART LUNG TRANSPL, V38, P879, DOI 10.1016/j.healun.2019.06.022
  19. Hasegawa K, 2019, ALLERGY, V74, P1374, DOI 10.1111/all.13723
  20. Hayden FG, 2004, REV MED VIROL, V14, P17, DOI 10.1002/rmv.406
  21. Hislop AA, 2002, J ANAT, V201, P325, DOI 10.1046/j.1469-7580.2002.00097.x
  22. Hosakote YM, 2009, AM J RESP CELL MOL, V41, P348, DOI 10.1165/rcmb.2008-0330OC
  23. Ikeda Y, 2002, AM J PHYSIOL-HEART C, V283, pH2021, DOI 10.1152/ajpheart.00919.2001
  24. Inoue N, 2013, INT HEART J, V54, P149, DOI 10.1536/ihj.54.149
  25. Jackson DJ, 2022, J ALLER CL IMM-PRACT, V10, P673, DOI 10.1016/j.jaip.2022.01.006
  26. Justus G, 2019, CYTOKINE, V122, DOI 10.1016/j.cyto.2017.03.017
  27. Kaestner M, 2016, HEART, V102, P57, DOI 10.1136/heartjnl-2015-307774
  28. Khalfaoui S, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147010
  29. Kieninger E, 2013, CHEST, V143, P782, DOI 10.1378/chest.12-0954
  30. Koestenberger M, 2009, J AM SOC ECHOCARDIOG, V22, P715, DOI 10.1016/j.echo.2009.03.026
  31. Li X, 2020, PEDIATR CRIT CARE ME, V21, pE431, DOI 10.1097/PCC.0000000000002308
  32. Likonska A, 2022, APMIS, V130, P678, DOI 10.1111/apm.13269
  33. Marwali EM, 2021, CARDIOL YOUNG, V31, P1381, DOI 10.1017/S1047951121002092
  34. Moynihan K, 2017, PEDIATR CRIT CARE ME, V18, P219, DOI 10.1097/PCC.0000000000001083
  35. Papadopoulos NG, 1999, J MED VIROL, V58, P100, DOI 10.1002/(SICI)1096-9071(199905)58:1<100::AID-JMV16>3.0.CO;2-D
  36. Papadopoulos NG, 2000, J INFECT DIS, V181, P1875, DOI 10.1086/315513
  37. Revercomb L, 2021, FRONT MOL BIOSCI, V7, DOI 10.3389/fmolb.2020.624093
  38. Rivera IR, 2013, ECHOCARDIOGR-J CARD, V30, P952, DOI 10.1111/echo.12163
  39. Sanchez O, 2007, AM J RESP CRIT CARE, V176, P1041, DOI 10.1164/rccm.200610-1559OC
  40. Shariff S, 2017, AM J RESP CELL MOL, V56, P796, DOI 10.1165/rcmb.2016-0252OC
  41. Shelfoon C, 2016, J ALLERGY CLIN IMMUN, V138, P114, DOI 10.1016/j.jaci.2015.12.1308
  42. Singh S, 2021, INT IMMUNOPHARMACOL, V101, DOI 10.1016/j.intimp.2021.107598
  43. Southworth T, 2020, CYTOKINE, V125, DOI 10.1016/j.cyto.2019.154857
  44. Souza MFS, 2022, MEDIAT INFLAMM, V2022, DOI 10.1155/2022/3977585
  45. Spaeder MC, 2011, PEDIATR CARDIOL, V32, P801, DOI 10.1007/s00246-011-9985-9
  46. Sugawara Y, 2019, BRIT J ANAESTH, V122, P437, DOI 10.1016/j.bja.2019.01.014
  47. Tahamtan A, 2021, BRIT J PHARMACOL, V178, P515, DOI 10.1111/bph.15318
  48. Tang C, 2021, BIOMED PHARMACOTHER, V133, DOI 10.1016/j.biopha.2020.111081
  49. To KKW, 2017, J FORMOS MED ASSOC, V116, P496, DOI 10.1016/j.jfma.2017.04.009
  50. Wang XK, 1996, J BIOL CHEM, V271, P24286, DOI 10.1074/jbc.271.39.24286
  51. Wark PAB, 2007, J ALLERGY CLIN IMMUN, V120, P586, DOI 10.1016/j.jaci.2007.04.046
  52. Zeng RH, 2011, CYTOKINE, V53, P1, DOI 10.1016/j.cyto.2010.09.011
  53. Zhang B, 2012, MICROVASC RES, V83, P205, DOI 10.1016/j.mvr.2011.09.014