Par-4 in apoptosis during human salivary gland development and tumorigenesis

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
bookPart
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER INTERNATIONAL PUBLISHING
Autores
COUTINHO-CAMILLO, C. M.
GOMES, A. N. de Mello
PAULA, F. D.
LOURENCO, S. V.
Citação
Coutinho-camillo, C. M.; de Mello Gomes, A. N.; Paula, F. D.; Nagai, M. A.; Lourenco, S. V.. Par-4 in apoptosis during human salivary gland development and tumorigenesis. In: . Tumor Suppressor Par-4: Role in Cancer and Other Diseases: SPRINGER INTERNATIONAL PUBLISHING, 2022. p.269-279.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Human salivary glands (SGs) are complex structures comprising a system of ducts and acini formed in gradual stages termed the prebud, initial bud, pseudoglandular, canalicular, and terminal bud. This process involves growth, proliferation, differentiation, migration, and cell death. Studies in human specimens and in vitro models have demonstrated that apoptosis seems to be important not only during the early developmental stages of the salivary glands, but also contributes to the tumorigenic process and impacts the patient's treatment. Therefore, the screening of proteins associated with apoptosis might contribute to the development of different strategies focusing on cancer diagnosis, prognosis, and target therapies. The prostate apoptosis response-4 (PAR-4) is a 38 kDa protein encoded by the PAWR gene (PKC apoptosis WT1 regulator) that is ubiquitously expressed in different tissues and plays a role in both the intrinsic and extrinsic apoptotic pathways. This chapter explores the current knowledge on the expression of Par-4 during human salivary gland development and in the most frequent salivary gland tumors (benign: pleomorphic adenoma and malignant: adenoid cystic carcinoma and mucoepidermoid carcinoma). In addition to the application of Par-4 as a tumor prognostic marker, the use of targeted therapies against Par-4 is increasingly considered as an important strategy for cancer treatment. © Springer Nature Switzerland AG 2021. All rights reserved.
Palavras-chave
Adenoid cystic carcinoma, Apoptosis, Differentiation, Morphogenesis, Mucoepidermoid carcinoma, Organogenesis, Par-4, Pleomorphic adenoma, Salivary gland development, Salivary gland tumors
Referências
  1. Patel V.N., Hoffman M.P., Salivary gland development: a template for regeneration., Semin Cell Dev Biol, 25-26, pp. 52-60, (2014)
  2. Porcheri C., Mitsiadis T.A., Physiology, pathology and regeneration of salivary glands, Cell, 8, 9, (2019)
  3. de Paula F., Teshima T.H.N., Hsieh R., Souza M.M., Nico M.M.S., Lourenco S.V., Overview of human salivary glands: highlights of morphology and developing processes, Anat Rec (Hoboken), 300, 7, pp. 1180-1188, (2017)
  4. Lourenco S.V., Lima D.M., Uyekita S.H., Schultz R., de Brito T., Expression of beta-1 integrin in human developing salivary glands and its parallel relation with maturation markers: in situ hybridisation and immunofluorescence study, Arch Oral Biol, 52, 11, pp. 1064-1071, (2007)
  5. Lourenco S.V., Kapas S., Integrin expression in developing human salivary glands, Histochem Cell Biol, 124, 5, pp. 391-399, (2005)
  6. Tucker A.S., Salivary gland development, Semin Cell Dev Biol, 18, 2, pp. 237-244, (2007)
  7. Harunaga J., Hsu J.C., Yamada K.M., Dynamics of salivary gland morphogenesis, J Dent Res, 90, 9, pp. 1070-1077, (2011)
  8. Lee E.S., Adhikari N., Jung J.K., An C.H., Kim J.Y., Kim J.Y., Application of developmental principles for functional regeneration of salivary glands, Anat Biol Anthropol, 32, 3, pp. 83-91, (2019)
  9. Gomes de M.A.N., Nagai M.A., Lourenco S.V., Coutinho-Camillo C.M., Apoptosis and proliferation during human salivary gland development, J Anat, 234, 6, pp. 830-838, (2019)
  10. de Paula F., Tucker A.S., Teshima T.H.N., de Souza M.M., Coutinho-Camillo C.M., Nico M.M.S., Lourenco S.V., Characteristics of aquaporin 1, 3, and 5 expression during early murine salivary gland development., J Anat., (2020)
  11. Hauser B.R., Hoffman M.P., Regulatory mechanisms driving salivary gland organogenesis, Curr Top Dev Biol, 115, pp. 111-130, (2015)
  12. Patel V.N., Rebustini I.T., Hoffman M.P., Salivary gland branching morphogenesis, Differentiation, 74, 7, pp. 349-364, (2006)
  13. Teshima T.H., Ianez R.C., Coutinho-Camillo C.M., Tucker A.S., Lourenco S.V., Apoptosis-associated protein expression in human salivary gland morphogenesis, Arch Oral Biol, 69, pp. 71-81, (2016)
  14. Teshima T.H., Wells K.L., Lourenco S.V., Tucker A.S., Apoptosis in early salivary gland duct morphogenesis and lumen formation, J Dent Res, 95, 3, pp. 277-283, (2016)
  15. Martins M.D., Cavalcanti De A.V., Raitz R., Soares De A.N., Expression of cytoskeletal proteins in developing human minor salivary glands, Eur J Oral Sci, 110, 4, pp. 316-321, (2002)
  16. Redman R.S., Myoepithelium of salivary glands, Microsc Res Tech, 27, 1, pp. 25-45, (1994)
  17. Ianez R.F., Buim M.E., Coutinho-Camillo C.M., Schultz R., Soares F.A., Lourenco S.V., Human salivary gland morphogenesis: myoepithelial cell maturation assessed by immunohistochemical markers, Histopathology, 57, 3, pp. 410-417, (2010)
  18. Chitturi R.T., Veeravarmal V., Nirmal R.M., Reddy B.V., Myoepithelial cells (MEC) of the salivary glands in health and tumours, J Clin Diagn Res, 9, 3, pp. ZE14-ZE18, (2015)
  19. Walker J.L., Menko A.S., Khalil S., Rebustini I., Hoffman M.P., Kreidberg J.A., Kukuruzinska M.A., Diverse roles of E-cadherin in the morphogenesis of the submandibular gland: insights into the formation of acinar and ductal structures, Dev Dyn, 237, 11, pp. 3128-3141, (2008)
  20. Lourenco S.V., Coutinho-Camillo C.M., Buim M.E., Uyekita S.H., Soares F.A., Human salivary gland branching morphogenesis: morphological localization of claudins and its parallel relation with developmental stages revealed by expression of cytoskeleton and secretion markers., Histochem Cell Biol, 128, 4, pp. 361-369, (2007)
  21. de Paula F., Teshima T.H.N., Hsieh R., Souza M.M., Coutinho-Camillo C.M., Nico M.M.S., Lourenco S.V., The expression of water channel proteins during human salivary gland development: a topographic study of aquaporins 1, 3 and 5., J Mol Histol, 48, 5-6, pp. 329-336, (2017)
  22. Datta A.K., Farmer S.F., Stephens J.A., Central nervous pathways underlying synchronization of human motor unit firing studied during voluntary contractions, J Physiol, 432, pp. 401-425, (1991)
  23. Ghasemlou N., Krol K.M., Macdonald D.R., Kawaja M.D., Comparison of target innervation by sympathetic axons in adult wild type and heterozygous mice for nerve growth factor or its receptor trkA, J Pineal Res, 37, 4, pp. 230-240, (2004)
  24. Proctor G.B., Carpenter G.H., Regulation of salivary gland function by autonomic nerves, Auton Neurosci, 133, 1, pp. 3-18, (2007)
  25. Knox S.M., Lombaert I.M., Reed X., Vitale-Cross L., Gutkind J.S., Hoffman M.P., Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis, Science, 329, 5999, pp. 1645-1647, (2010)
  26. Naesse E.P., Schreurs O., Messelt E., Hayashi K., Schenck K., Distribution of nerve growth factor, pro-nerve growth factor, and their receptors in human salivary glands, Eur J Oral Sci, 121, 1, pp. 13-20, (2013)
  27. Nedvetsky P.I., Emmerson E., Finley J.K., Ettinger A., Cruz-Pacheco N., Prochazka J., Haddox C.L., Northrup E., Hodges C., Mostov K.E., Hoffman M.P., Knox S.M., Parasympathetic innervation regulates tubulogenesis in the developing salivary gland, Dev Cell, 30, 4, pp. 449-462, (2014)
  28. Lourengo S.V., Uyekita S.H., Lima D.M., Soares F.A., Developing human minor salivary glands: morphological parallel relation between the expression of TGF-beta isoforms and cytoskeletal markers of glandular maturation, Virchows Arch, 452, 4, pp. 427-434, (2008)
  29. Morita K., Nogawa H., EGF-dependent lobule formation and FGF7-dependent stalk elongation in branching morphogenesis of mouse salivary epithelium in vitro, Dev Dyn, 215, pp. 148-154, (1999)
  30. Nitta M., Kume T., Nogawa H., FGF alters epithelial competence for EGF at the initiation of branching morphogenesis of mouse submandibular gland, Dev Dyn, 238, 2, pp. 315-323, (2009)
  31. Prochazkova M., Prochazka J., Marangoni P., Klein O.D., Bones, glands, ears and more: the multiple roles of FGF10 in craniofacial development, Front Genet, 9, (2018)
  32. Liu F., Wang S., Molecular cues for development and regeneration of salivary glands, Histol Histopathol, 29, 3, pp. 305-312, (2014)
  33. Matsumoto L.C., Bogic L., Brace R.A., Cheung C.Y., Fetal esophageal ligation induces expression of vascular endothelial growth factor messenger ribonucleic acid in fetal membranes, Am J Obstet Gynecol, 184, 2, pp. 175-184, (2001)
  34. Asking B., Gjorstrup P., Synthesis and secretion of amylase in the rat parotid gland following autonomic nerve stimulation in vivo, Acta Physiol Scand, 130, 3, pp. 439-445, (1987)
  35. Proctor G.B., The physiology of salivary secretion, Periodontol, 70, 1, pp. 11-25, (2016)
  36. Mattingly A., Finley J.K., Knox S.M., Salivary gland development and disease, Wiley Interdiscip Rev Dev Biol, 4, 6, pp. 573-590, (2015)
  37. Kerr J.F., Wyllie A.H., Currie A.R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br J Cancer, 26, 4, pp. 239-257, (1972)
  38. Flusberg D.A., Sorger P.K., Surviving apoptosis: life-death signaling in single cells, Trends Cell Biol, 25, pp. 446-458, (2015)
  39. Papaliagkas V., Anogianaki A., Anogianakis G., Ilonidis G., The proteins and the mechanisms of apoptosis: a mini-review of the fundamentals, Hippokratia, 11, 3, pp. 108-113, (2007)
  40. Suzanne M., Steller H., Shaping organisms with apoptosis, Cell Death Differ, 20, pp. 669-675, (2013)
  41. Shrestha-Bhattarai T., Rangnekar V.M., Cancer-selective apoptotic effects of extracellular and intracellular Par-4, Oncogene, 29, pp. 3873-3880, (2010)
  42. da Silva G.M., Saavedra V., Ianez R.C.F., de Sousa E.A., Gomes aN., Kelner N., Nagai M.A., Kowalski L.P., Soares F.A., Lourengo S.V., Coutinho-Camillo C.M., Apoptotic signaling in salivary mucoepidermoid carcinoma, Head Neck, 41, 9, pp. 2904-2913, (2019)
  43. Goswami A., Ranganathan P., Rangnekar V.M., The phosphoinositide-kinase/Akt1/Par-4 axis: a cancer-selective therapeutic target, Cancer Res, 66, pp. 2889-2892, (2006)
  44. Zhao Y., Rangnekar V.M., Apoptosis and tumor resistance conferred by PAR4, Cancer Biol Ther, 7, pp. 1867-1874, (2008)
  45. Elmore S., Apoptosis: a review of programmed cell death, Toxicol Pathol, 35, pp. 495-516, (2007)
  46. Hebbar N., Wang C., Rangnekar V.M., Mechanisms of apoptosis by the tumor suppressor Par-4, J Cell Physiol, 227, 12, pp. 3715-3721, (2012)
  47. Ma Y., Zhang P., Wang F., Yang J., Yang Z., Qin H., The relationship between early embryo development and tumourigenesis, J Cell Mol Med, 14, 12, pp. 2697-2701, (2010)
  48. El-Naggar A.K., Chan J., Takata T., Grandis J., Blootweg P., WHO classification of tumours. Pathology and genetics of head and neck tumours, 4th edn., IARC Press, Lyon, (2017)
  49. Seethala R.R., Salivary gland Tumors: current concepts and controversies, Surg Pathol Clin, 10, 1, pp. 155-176, (2017)
  50. Mendenhall W.M., Mendenhall C.M., Werning J.W., Malyapa R.S., Mendenhall N.P., Salivary gland pleomorphic adenoma, Am J Clin Oncol, 31, 1, pp. 95-99, (2008)
  51. Coca-Pelaz A., Rodrigo J.P., Bradley P.J., Vander Poorten V., Triantafyllou A., Hunt J.L., Strojan P., Rinaldo A., Haigentz M., Takes R.P., Mondin V., Teymoortash A., Thompson L.D., Ferlito A., Adenoid cystic carcinoma of the head and neck-An update, Oral Oncol, 51, 7, pp. 652-661, (2015)
  52. McHugh C.H., Roberts D.B., El-Naggar A.K., Hanna E.Y., Garden A.S., Kies M.S., Weber R.S., Kupferman M.E., Prognostic factors in mucoepidermoid carcinoma of the salivary glands, Cancer, 118, 16, pp. 3928-3936, (2012)
  53. Yan K., Yesensky J., Hasina R., Agrawal N., Genomics of mucoepidermoid and adenoid cystic carcinomas, Laryngoscope Investig Otolaryngol, 3, 1, pp. 56-61, (2018)
  54. Ha P.K., Stenman G., Molecular pathology and biomarkers, Adv Otorhinolaryngol, 78, pp. 17-24, (2016)
  55. Yin L.X., Ha P.K., Genetic alterations in salivary gland cancers, Cancer, 122, 12, pp. 1822-1831, (2016)
  56. Aoki T., Tsukinoki K., Karakida K.et al., Et al., Expression of cyclooxygenase-2, Bcl-2 and Ki-67 in pleomorphic adenoma with special reference to tumor proliferation and apoptosis, Oral Oncol, 40, pp. 954-959, (2004)
  57. Cevik-Aras H., Kjeller G., Larsson L., Expression of tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) in minor salivary glands and saliva, J Immunol Methods, 476, (2020)
  58. Ferreira J.C., Morais M.O., Elias M.R.et al., Et al., Pleomorphic adenoma of oral minor salivary glands: an investigation of its neoplastic potential based on apoptosis, mucosecretory activity and cellular proliferation, Arch Oral Biol, 59, pp. 578-585, (2014)
  59. Gomes C.C., Bernardes V.F., Diniz M.G et al., Et al., Anti-apoptotic gene transcription signature of salivary gland neoplasms, BMC Cancer, 12, (2012)
  60. Schnoell J., Kadletz L., Jank B.J., Oberndorfer F., Brkic F.F., Gurnhofer E., Cede J., Seemann R., Kenner L., Heiduschka G., Expression of inhibitors of apoptosis proteins in salivary gland adenoid cystic carcinoma: XIAP is an independent marker of impaired cause- specific survival, Clin Otolaryngol, 45, 3, pp. 364-369, (2020)
  61. Soini Y., Tormanen U., Paakko P., Apoptosis is inversely related to bcl-2 but not to bax expression in salivary gland tumours, Histopathology, 32, pp. 28-34, (1998)
  62. Stenner M., Weinell A., Ponert T.et al., Et al., Cytoplasmic expression of survivin is an independent predictor of poor prognosis in patients with salivary gland cancer, Histopathology, 57, pp. 699-706, (2010)
  63. Irby R.B., Kline C.L., Par-4 as a potential target for cancer therapy, Expert Opin Ther Targets, 17, 1, pp. 77-87, (2013)
  64. Ahmad S.M., Nayak D., Mir K.B., Faheem M.M., Nawaz S., Yadav G., Goswami A., Par-4 activation restrains EMT-induced che- moresistance in PDAC by attenuating MDM-2, Pancreatology, 20, 8, pp. 1698-1710, (2020)
  65. Katoch A., Jamwal V.L., Faheem M.M., Kumar S., Senapati S., Yadav G., Gandhi S.G., Goswami A., Overlapping targets exist between the Par-4 and miR-200c axis which regulate EMT and proliferation of pancreatic cancer cells, Transl Oncol, 14, 1, (2021)
  66. Santos R.V.C., de Sena W.L.B., Dos Santos F.A., Da Silva F.A.F., Da Rocha P.M.G., Da Rocha P.M.G., De Melo R.M.B., Pereira M.C, Potential therapeutic agents against Par-4 target for cancer treatment: where are we going?, Curr Drug Targets, 20, 6, pp. 635-654, (2019)
  67. Burikhanov R., Zhao Y., Goswami A., Qiu S., Schwarze S.R., Rangnekar V.M., The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis, Cell, 138, 2, pp. 377-388, (2009)
  68. Kim K., Araujo P., Hebbar N., Zhou Z., Zheng X., Zheng F., Rangnekar V.M., Zhan C.G., Development of a novel prostate apoptosis response-4 (Par-4) protein entity with an extended duration of action for therapeutic treatment of cancer, Protein Eng Des Sel, 32, 3, pp. 159-166, (2019)
  69. Andry G., Hamoir M., Locati L.D., Licitra L., Langendijk J.A., Management of salivary gland tumors, Expert Rev Anticancer Ther, 12, 9, pp. 1161-1168, (2012)
  70. Green B., Rahimi S., Brennan P.A., Salivary gland malignancies-an update on current management for oral healthcare practitioners, Oral Dis, 22, 8, pp. 735-739, (2016)
  71. Li R., Dou S., Ruan M., Zhang C., Zhu G., A feasibility and safety study of concurrent chemotherapy based on genetic testing in patients with high-risk salivary gland tumors: preliminary results, Medicine (Baltimore), 97, 17, (2018)
  72. Milano A., Longo F., Basile M., Iaffaioli R.V., Caponigro F., Recent advances in the treatment of salivary gland cancers: emphasis on molecular targeted therapy, Oral Oncol, 43, 8, pp. 729-734, (2007)
  73. Kato S., Elkin S.K., Schwaederle M., Tomson B.N., Helsten T., Carter J.L., Kurzrock R., Genomic landscape of salivary gland tumors, Oncotarget, 6, 28, pp. 25631-25645, (2015)
  74. Seethala R.R., Griffith C.C., Molecular pathology: predictive, prognostic, and diagnostic markers in salivary gland tumors, Surg Pathol Clin, 9, 3, pp. 339-352, (2016)
  75. Chen C., Choudhury S., Wangsa D., Lescott C.J., Wilkins D.J., Sripadhan P., Liu X., Wangsa D., Ried T., Moskaluk C., Wick M.J., Glasgow E., Schlegel R., Agarwal S., A multiplex preclinical model for adenoid cystic carcinoma of the salivary gland identifies regorafenib as a potential therapeutic drug, Sci Rep, 7, 1, (2017)
  76. Keysar S.B., Eagles J.R., Miller B., Jackson B.C., Chowdhury F.N., Reisinger J., Chimed T.S., Le P.N., Morton J.J., Somerset H.L., Varella-Garcia M., Tan A.C., Song J.I., Bowles D.W., Reyland M.E., Jimeno A., Salivary gland cancer patient-derived xenografts enable characterization of cancer stem cells and new gene events associated with tumor progression, Clin Cancer Res, 24, 12, pp. 2935-2943, (2018)
  77. Takada K., Aizawa Y., Sano D., Okuda R., Sekine K., Ueno Y., Yamanaka S., Aoyama J., Sato K., Kuwahara T., Hatano T., Takahashi H., Arai Y., Nishimura G., Taniguchi H., Oridate N., Establishment of PDX-derived salivary adenoid cystic carcinoma cell lines using organoid culture method, Int J Cancer, 148, 1, pp. 193-202, (2021)