Recalling feature bindings differentiates Alzheimer's disease from frontotemporal dementia

Carregando...
Imagem de Miniatura
Citações na Scopus
25
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER HEIDELBERG
Autores
BAHIA, Valeria Santoro
SOUZA, Leonardo Cruz de
GUIMARAES, Henrique Cerqueira
CARAMELLI, Paulo
CARTHERY-GOULART, Maria Teresa
PATROCINIO, Flavia
FOSS, Maria Paula
TUMAS, Vitor
Citação
JOURNAL OF NEUROLOGY, v.264, n.10, p.2162-2169, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
It has been challenging to identify clinical cognitive markers that can differentiate patients with Alzheimer's disease (AD) from those with behavioral variant frontotemporal dementia (bvFTD). The short-term memory binding (STMB) test assesses the ability to integrate colors and shapes into unified representations and to hold them temporarily during online performance. The objective of this study is to investigate whether free recall deficits during short-term memory binding (STMB) test can differentiate patients with AD from those with bvFTD and controls. Participants were 32 cognitively intact adults, 35 individuals with AD and 18 with bvFTD. All patients were in the mild dementia stage. Receiver-operating characteristic (ROC) analyses were used to examine the diagnostic accuracy of the STMB. The results showed that AD patients performed significantly worse than controls and bvFTD patients in the STMB test, while the latter groups showed equivalent performance. The bound condition of the STMB test showed an AUC of 0.853, with 84.4% of sensitivity and 80% of specificity to discriminate AD from controls and an AUC of 0.794, with 72.2% of sensitivity and 80% of specificity to differentiate AD from bvFTD. Binding deficits seem specific to AD. The free recall version of the STMB test can be used for clinical purposes and may aid in the differential diagnosis of AD. Findings support the view that the STMB may be a suitable cognitive marker for AD.
Palavras-chave
Alzheimer's disease, Behavioral variant frontotemporal dementia, Differential diagnosis, Memory binding, Short-term memory
Referências
  1. Baddeley A, 2010, NEUROPSYCHOLOGIA, V48, P1089, DOI 10.1016/j.neuropsychologia.2009.12.009
  2. Brockmole JR, 2008, PSYCHON B REV, V15, P543, DOI 10.3758/PBR.15.3.543
  3. Brucki SMD, 2003, ARQ NEURO-PSIQUIAT, V61, P777, DOI 10.1590/S0004-282X2003000500014
  4. BUSCHKE H, 1984, J CLIN NEUROPSYCHOL, V6, P433, DOI 10.1080/01688638408401233
  5. Collins JA, 2017, BRAIN, V140, P457, DOI 10.1093/brain/aww313
  6. de Souza LC, 2013, J ALZHEIMERS DIS, V36, P57, DOI 10.3233/JAD-122293
  7. Della Sala S, 2012, NEUROPSYCHOLOGIA, V50, P833, DOI 10.1016/j.neuropsychologia.2012.01.018
  8. Della Sala S, 2016, INT J GERIATR PSYCH, DOI [10.1002/gps.4610, DOI 10.1002/GPS.4610]
  9. Didic M, 2011, J ALZHEIMERS DIS, V27, P11, DOI 10.3233/JAD-2011-110557
  10. Flanagan EC, 2016, FRONT AGING NEUROSCI, V8, DOI 10.3389/fnagi.2016.00177
  11. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  12. Grober E, 1998, J CLIN EXP NEUROPSYC, V20, P221
  13. Hannula DE, 2008, J NEUROSCI, V28, P116, DOI 10.1523/JNEUROSCI.3086-07.2008
  14. Hodges JR, 2007, LANCET NEUROL, V6, P1004, DOI 10.1016/S1474-4422(07)70266-1
  15. Hornberger M, 2010, NEUROLOGY, V74, P472, DOI 10.1212/WNL.0b013e3181cef85d
  16. Hutchinson AD, 2007, J NEUROL NEUROSUR PS, V78, P917, DOI 10.1136/jnnp.2006.100669
  17. Isella V, 2015, BRAIN COGNITION, V96, P38, DOI 10.1016/j.bandc.2015.02.002
  18. Lemos R, 2015, GERIATR GERONTOL INT, V15, P961, DOI 10.1111/ggi.12374
  19. Leys C, 2010, J EXP SOC PSYCHOL, V46, P684, DOI 10.1016/j.jesp.2010.02.007
  20. Logie R. H., 2015, POLICY INSIGHTS BEHA, V2, P81, DOI 10.1177/2372732215601370
  21. Logie RH, 2009, VIS COGN, V17, P160, DOI 10.1080/13506280802228411
  22. McKhann GM, 2011, ALZHEIMERS DEMENT, V7, P263, DOI 10.1016/j.jalz.2011.03.005
  23. Olson IR, 2006, J NEUROSCI, V26, P4596, DOI 10.1523/JNEUROSCI.1923-05.2006
  24. Parra MA, 2015, NEUROCASE, V21, P56, DOI 10.1080/13554794.2013.860177
  25. Parra MA, 2014, NEUROPSYCHOLOGIA, V52, P27, DOI 10.1016/j.neuropsychologia.2013.09.036
  26. Parra MA, 2011, NEUROPSYCHOLOGIA, V49, P1943, DOI 10.1016/j.neuropsychologia.2011.03.022
  27. Parra MA, 2010, BRAIN, V133, P2702, DOI 10.1093/brain/awq148
  28. Parra MA, 2010, J NEUROL, V257, P1160, DOI 10.1007/s00415-010-5484-9
  29. Parra MA, 2009, BRAIN, V132, P1057, DOI 10.1093/brain/awp036
  30. Parra MA, 2009, NEUROSCI LETT, V449, P1, DOI 10.1016/j.neulet.2008.10.069
  31. Ramanan S, 2017, J INT NEUROPSYCH SOC, V23, P34, DOI 10.1017/S1355617716000837
  32. Rascovsky K, 2011, BRAIN, V134, P2456, DOI 10.1093/brain/awr179
  33. Rhodes S, 2016, Q J EXP PSYCHOL, V69, P654, DOI 10.1080/17470218.2015.1038571
  34. Rohrer JD, 2009, NEUROLOGY, V72, P1562, DOI 10.1212/WNL.0b013e3181a4124e
  35. Roman Fabian, 2016, Dement. neuropsychol., V10, P217, DOI 10.1590/S1980-5764-2016DN1003008
  36. Schroeter ML, 2008, NEUROBIOL AGING, V29, P418, DOI 10.1016/j.neurobiolaging.2006.10.023
  37. Schubert S, 2016, J ALZHEIMERS DIS, V51, P775, DOI 10.3233/JAD-150802
  38. Seeley WW, 2008, ARCH NEUROL-CHICAGO, V65, P249, DOI 10.1001/archneurol.2007.38
  39. van Geldorp B, 2015, MEMORY, V23, P1112, DOI 10.1080/09658211.2014.953959
  40. Wagner M, 2012, NEUROLOGY, V78, P379, DOI 10.1212/WNL.0b013e318245f447
  41. Zammit AR, 2017, BEHAV BRAIN RES, V317, P157, DOI 10.1016/j.bbr.2016.09.038