Transcranial direct current stimulation combined with robotic training in incomplete spinal cord injury: a randomized, sham-controlled clinical trial

Nenhuma Miniatura disponível
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGERNATURE
Citação
SPINAL CORD SERIES AND CASES, v.7, n.1, article ID 87, 7p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Study design A randomized, sham-controlled clinical trial. Objective To test the effects of tDCS, combined with robotic training, on gait disability in SCI. Our hypothesis was that participants who received active tDCS would experience greater walking gains, as indexed by the WISCI-II, than those who received sham tDCS. Setting University of Sao Paulo, Brazil. Methods This randomized, double-blind study comprised 43 participants with incomplete SCI who underwent 30 sessions of active (n = 21) or sham (n = 22) tDCS (20 min, 2 mA) before every Lokomat session of 30 min (3 times a week over 12 weeks or 5 times a week over 6 weeks). The main outcome was the improvement in WISCI-II. Participants were assessed at baseline, after 15 and 30 sessions of Lokomat, and after three months of treatment. Results There was a significant difference in the percentage of participants that improved in WISCI-II at the 30-session, compared with baseline: 33.3% in the sham group and 70.0% in the active group (p = 0.046; OR: 3.7; 95% CI: 1.0-13.5). At the follow-up, the improvement compared with baseline in the sham group was 35.0% vs. 68.4% for the active group (p = 0.046; OR: 3.7; 95% CI: 1.0-13.5). There was no significant difference at the 15-session. Conclusion Thirty sessions of active tDCS is associated with a significant improvement in walking, compared to sham. Moreover, 15 sessions had no significant effect. The improvement in WISCI-II can be related to different aspects of motor learning, including motor recovery and compensation.
Palavras-chave
Referências
  1. Agboada D, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-54621-0
  2. Ammann C, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.01981
  3. Bai SW, 2014, NEUROIMAGE, V87, P332, DOI 10.1016/j.neuroimage.2013.11.015
  4. Barron HC, 2016, NEURON, V90, P191, DOI 10.1016/j.neuron.2016.02.031
  5. Benito J, 2012, Top Spinal Cord Inj Rehabil, V18, P106, DOI 10.1310/sci1802-106
  6. Burns AS, 2011, NEUROREHAB NEURAL RE, V25, P149, DOI 10.1177/1545968310376756
  7. Castillo-Saavedra L, 2016, J PAIN, V17, P14, DOI 10.1016/j.jpain.2015.09.009
  8. Dhawale AK, 2017, ANNU REV NEUROSCI, V40, P479, DOI 10.1146/annurev-neuro-072116-031548
  9. Fregni F, 2021, INT J NEUROPSYCHOPH, V24, P256, DOI 10.1093/ijnp/pyaa051
  10. Gomes-Osman J, 2015, CLIN REHABIL, V29, P771, DOI 10.1177/0269215514556087
  11. de Paz RH, 2019, J NEUROENG REHABIL, V16, DOI 10.1186/s12984-019-0591-z
  12. Hesse S, 2009, BRAIN RES BULL, V78, P26, DOI 10.1016/j.brainresbull.2008.06.004
  13. Huang YZ, 2017, CLIN NEUROPHYSIOL, V128, P2318, DOI 10.1016/j.clinph.2017.09.007
  14. Kahan BC, 2012, BMJ-BRIT MED J, V345, DOI 10.1136/bmj.e5840
  15. Korzhova J, 2018, EUR J PHYS REHAB MED, V54, P75, DOI 10.23736/S1973-9087.16.04433-6
  16. Kumru H, 2016, EXP BRAIN RES, V234, P3447, DOI 10.1007/s00221-016-4739-9
  17. Kumru H, 2016, NEUROSCI LETT, V620, P143, DOI 10.1016/j.neulet.2016.03.056
  18. Kumru H, 2010, NEUROREHAB NEURAL RE, V24, P435, DOI 10.1177/1545968309356095
  19. Leite VF, 2019, SPINAL CORD, V57, P134, DOI 10.1038/s41393-018-0183-y
  20. Martin JH, 2016, NEURAL REGEN RES, V11, P1389, DOI 10.4103/1673-5374.191199
  21. Nam KY, 2017, J NEUROENG REHABIL, V14, DOI 10.1186/s12984-017-0232-3
  22. Nardone R, 2014, SPINAL CORD, V52, P831, DOI 10.1038/sc.2014.136
  23. Neuling Toralf, 2012, Front Psychiatry, V3, P83
  24. Nitsche MA, 2001, NEUROLOGY, V57, P1899, DOI 10.1212/WNL.57.10.1899
  25. Nitsche MA, 2003, CLIN NEUROPHYSIOL, V114, P600, DOI 10.1016/S1388-2457(02)00412-1
  26. Raithatha R, 2016, NEUROREHABILITATION, V38, P15, DOI 10.3233/NRE-151291
  27. Scivoletto G, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00141
  28. Shmuelof L, 2011, NEURON, V72, P469, DOI 10.1016/j.neuron.2011.10.017
  29. Simis M, 2018, CLIN NEUROPHYSIOL, pE43
  30. Simis M, 2020, CLIN NEUROPHYSIOL, V131, P1806, DOI 10.1016/j.clinph.2020.04.166
  31. Singh A, 2014, CLIN EPIDEMIOL, V6, P309, DOI 10.2147/CLEP.S68889
  32. Spampinato D, 2021, NEUROSCIENTIST, V27, P246, DOI 10.1177/1073858420939552
  33. Valle Angela, 2009, J Pain Manag, V2, P353
  34. Yozbatiran N, 2016, NEUROREHABILITATION, V39, P401, DOI 10.3233/NRE-161371