Disturbed Oligodendroglial Maturation Causes Cognitive Dysfunction in Schizophrenia: A New Hypothesis

Nenhuma Miniatura disponível
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
FALKAI, Peter
ROSSNER, Moritz J.
RAABE, Florian J.
WAGNER, Elias
KEESER, Daniel
MAURUS, Isabel
ROELL, Lukas
CHANG, Emily
SEITZ-HOLLAND, Johanna
SCHULZE, Thomas G.
Citação
SCHIZOPHRENIA BULLETIN, v.49, n.6, p.1614-1624, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background and Hypothesis Cognitive impairment is a hallmark of schizophrenia, but no effective treatment is available to date. The underlying pathophysiology includes disconnectivity between hippocampal and prefrontal brain regions. Supporting evidence comes from diffusion-weighted imaging studies that suggest abnormal organization of frontotemporal white matter pathways in schizophrenia. Study Design Here, we hypothesize that in schizophrenia, deficient maturation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes substantially contributes to abnormal frontotemporal macro- and micro-connectivity and subsequent cognitive deficits. Study Results Our postmortem studies indicate a reduced oligodendrocyte number in the cornu ammonis 4 (CA4) subregion of the hippocampus, and others have reported the same histopathological finding in the dorsolateral prefrontal cortex. Our series of studies on aerobic exercise training showed a volume increase in the hippocampus, specifically in the CA4 region, and improved cognition in individuals with schizophrenia. The cognitive effects were subsequently confirmed by meta-analyses. Cell-specific schizophrenia polygenic risk scores showed that exercise-induced CA4 volume increase significantly correlates with OPCs. From animal models, it is evident that early life stress and oligodendrocyte-related gene variants lead to schizophrenia-related behavior, cognitive deficits, impaired oligodendrocyte maturation, and reduced myelin thickness. Conclusions Based on these findings, we propose that pro-myelinating drugs (e.g., the histamine blocker clemastine) combined with aerobic exercise training may foster the regeneration of myelin plasticity as a basis for restoring frontotemporal connectivity and cognition in schizophrenia.
Palavras-chave
oligodendrocytes, oligodendrocyte precursor cells, myelination, cognition, hippocampus, prefrontal cortex
Referências
  1. AKBARIAN S, 1995, CEREB CORTEX, V5, P550, DOI 10.1093/cercor/5.6.550
  2. Assaf Y, 2008, J MOL NEUROSCI, V34, P51, DOI 10.1007/s12031-007-0029-0
  3. Badowska DM, 2020, TRANSL PSYCHIAT, V10, DOI 10.1038/s41398-020-01026-7
  4. Bähner F, 2017, EUR NEUROPSYCHOPHARM, V27, P93, DOI 10.1016/j.euroneuro.2016.12.007
  5. Basser PJ, 2002, NMR BIOMED, V15, P456, DOI 10.1002/nbm.783
  6. Bonoldi I, 2013, PSYCHIAT RES, V210, P8, DOI 10.1016/j.psychres.2013.05.003
  7. Bredin SSD, 2022, FRONT CARDIOVASC MED, V8, DOI 10.3389/fcvm.2021.753117
  8. Brzózka MM, 2010, BIOL PSYCHIAT, V68, P33, DOI 10.1016/j.biopsych.2010.03.015
  9. Buchanan RW, 2010, SCHIZOPHRENIA BULL, V36, P71, DOI 10.1093/schbul/sbp116
  10. Cai SP, 2020, BEHAV BRAIN RES, V379, DOI 10.1016/j.bbr.2019.112392
  11. Cannon M, 2002, AM J PSYCHIAT, V159, P1080, DOI 10.1176/appi.ajp.159.7.1080
  12. Cella M, 2017, CLIN PSYCHOL REV, V52, P43, DOI 10.1016/j.cpr.2016.11.009
  13. Cetin-Karayumak S, 2020, MOL PSYCHIATR, V25, P3208, DOI 10.1038/s41380-019-0509-y
  14. Cunniffe N, 2021, J NEUROL NEUROSUR PS, V92, P295, DOI 10.1136/jnnp-2020-324286
  15. Deshmukh VA, 2013, NATURE, V502, P327, DOI 10.1038/nature12647
  16. Ehrlich M, 2017, P NATL ACAD SCI USA, V114, pE2243, DOI 10.1073/pnas.1614412114
  17. Ellison-Wright I, 2009, SCHIZOPHR RES, V108, P3, DOI 10.1016/j.schres.2008.11.021
  18. Falkai P, 2015, MOL PSYCHIATR, V20, P671, DOI 10.1038/mp.2015.35
  19. Falkai P, 2021, EUR ARCH PSY CLIN N, V271, P1201, DOI 10.1007/s00406-021-01282-8
  20. Falkai P, 2020, EUR ARCH PSY CLIN N, V270, P413, DOI 10.1007/s00406-019-01067-0
  21. Falkai P, 2016, SCHIZOPHRENIA BULL, V42, pS4, DOI 10.1093/schbul/sbv157
  22. Falkai P, 2016, FRONT CELL NEUROSCI, V10, DOI [10.3389/fncel.2016.00078, 10.3389/fncel.2010.00078]
  23. Fields RD, 2008, TRENDS NEUROSCI, V31, P361, DOI 10.1016/j.tins.2008.04.001
  24. Firth J, 2017, SCHIZOPHRENIA BULL, V43, P546, DOI 10.1093/schbul/sbw115
  25. Fünfschilling U, 2012, NATURE, V485, P517, DOI 10.1038/nature11007
  26. García-León JA, 2018, STEM CELL REP, V10, P655, DOI 10.1016/j.stemcr.2017.12.014
  27. Georgieva L, 2006, P NATL ACAD SCI USA, V103, P12469, DOI 10.1073/pnas.0603029103
  28. Goff DC, 2013, WORLD PSYCHIATRY, V12, P99, DOI 10.1002/wps.20026
  29. Goff DC, 2011, PHARMACOL BIOCHEM BE, V99, P245, DOI 10.1016/j.pbb.2010.11.009
  30. Goldman SA, 2015, DEVELOPMENT, V142, P3983, DOI 10.1242/dev.126409
  31. Green AJ, 2017, LANCET, V390, P2481, DOI 10.1016/S0140-6736(17)32346-2
  32. Gustavsson A, 2011, EUR NEUROPSYCHOPHARM, V21, P718, DOI 10.1016/j.euroneuro.2011.08.008
  33. Hafner H., 2003, Schizophrenia, V2nd, P101, DOI 10.1002/9780470987353.CH8
  34. Hakak Y, 2001, P NATL ACAD SCI USA, V98, P4746, DOI 10.1073/pnas.081071198
  35. Hall MH, 2014, AM J MED GENET B, V165, P9, DOI 10.1002/ajmg.b.32212
  36. Haroutunian V, 2007, INT J NEUROPSYCHOPH, V10, P565, DOI 10.1017/S1461145706007310
  37. Hasan A, 2012, WORLD J BIOL PSYCHIA, V13, P318, DOI 10.3109/15622975.2012.696143
  38. Hermoye L, 2006, NEUROIMAGE, V29, P493, DOI 10.1016/j.neuroimage.2005.08.017
  39. Hof PR, 2003, BIOL PSYCHIAT, V53, P1075, DOI 10.1016/S0006-3223(03)00237-3
  40. Hoff AL, 2005, SCHIZOPHR RES, V78, P27, DOI 10.1016/j.schres.2005.05.010
  41. Holleran L, 2020, AM J PSYCHIAT, V177, P537, DOI 10.1176/appi.ajp.2019.19030225
  42. Insel TR, 2012, NATURE, V483, P269, DOI 10.1038/483269a
  43. Jääskeläinen E, 2013, SCHIZOPHRENIA BULL, V39, P1296, DOI 10.1093/schbul/sbs130
  44. Jensen SK, 2018, CELL REP, V24, P3167, DOI 10.1016/j.celrep.2018.08.060
  45. Jirsaraie RJ, 2018, SCHIZOPHR RES, V201, P237, DOI 10.1016/j.schres.2018.06.017
  46. Kahn RS, 2013, JAMA PSYCHIAT, V70, P1107, DOI 10.1001/jamapsychiatry.2013.155
  47. Kalkstein S, 2010, CURR TOP BEHAV NEURO, V4, P373, DOI 10.1007/7854_2010_42
  48. Kelly SM, 2018, SCHIZOPHR RES, V195, P76, DOI 10.1016/j.schres.2017.09.037
  49. Khadimallah I, 2022, MOL PSYCHIATR, V27, P1192, DOI 10.1038/s41380-021-01313-9
  50. Letzen BS, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010480
  51. Lewis DA, 2012, TRENDS NEUROSCI, V35, P57, DOI 10.1016/j.tins.2011.10.004
  52. Li ZF, 2015, NEUROSCI BULL, V31, P617, DOI 10.1007/s12264-015-1555-3
  53. Liu J, 2016, J NEUROSCI, V36, P957, DOI 10.1523/JNEUROSCI.3608-15.2016
  54. Makinodan M, 2012, SCIENCE, V337, P1357, DOI 10.1126/science.1220845
  55. Malchow B, 2016, SCHIZOPHR RES, V173, P182, DOI 10.1016/j.schres.2015.01.005
  56. Malchow B, 2015, J NEURAL TRANSM, V122, P1019, DOI 10.1007/s00702-014-1316-x
  57. Malchow B, 2015, SCHIZOPHRENIA BULL, V41, P847, DOI 10.1093/schbul/sbv020
  58. Martins-de-Souza D, 2021, WORLD J BIOL PSYCHIA, V22, P271, DOI 10.1080/15622975.2020.1789217
  59. Mauney SA, 2015, SCHIZOPHR RES, V169, P374, DOI 10.1016/j.schres.2015.10.042
  60. Maurus I, 2022, TRANSL PSYCHIAT, V12, DOI 10.1038/s41398-022-02155-x
  61. Maurus I, 2022, SCHIZOPHRENIA-UK, V8, DOI 10.1038/s41537-022-00269-1
  62. Maurus I, 2021, EUR ARCH PSY CLIN N, V271, P315, DOI 10.1007/s00406-020-01175-2
  63. McPhie DL, 2018, TRANSL PSYCHIAT, V8, DOI 10.1038/s41398-018-0284-6
  64. Mei F, 2014, NAT MED, V20, P954, DOI 10.1038/nm.3618
  65. Micheva KD, 2016, ELIFE, V5, DOI 10.7554/eLife.15784
  66. Miller DJ, 2012, P NATL ACAD SCI USA, V109, P16480, DOI 10.1073/pnas.1117943109
  67. Miron VE, 2011, BBA-MOL BASIS DIS, V1812, P184, DOI 10.1016/j.bbadis.2010.09.010
  68. Mitkus SN, 2008, SCHIZOPHR RES, V98, P129, DOI 10.1016/j.schres.2007.09.032
  69. Molina V, 2017, PROG NEURO-PSYCHOPH, V76, P107, DOI 10.1016/j.pnpbp.2017.03.001
  70. Motavaf M, 2021, FRONT CELL NEUROSCI, V15, DOI 10.3389/fncel.2021.764486
  71. Murray CJL, 2020, LANCET, V396, P1223, DOI [10.1016/S0140-6736(20)30752-2, 10.1016/S0140-6736(20)30925-9]
  72. Najm FJ, 2015, NATURE, V522, P216, DOI 10.1038/nature14335
  73. Nave KA, 2010, NATURE, V468, P244, DOI 10.1038/nature09614
  74. NICHOLSON AN, 1987, TRENDS PHARMACOL SCI, V8, P247, DOI 10.1016/0165-6147(87)90192-1
  75. OISHI R, 1994, N-S ARCH PHARMACOL, V349, P140
  76. Orduz D, 2015, ELIFE, V4, DOI 10.7554/eLife.06953
  77. Page NF, 2021, BIOL PSYCHIAT, V89, P896, DOI 10.1016/j.biopsych.2020.10.016
  78. Pajonk FG, 2010, ARCH GEN PSYCHIAT, V67, P133, DOI 10.1001/archgenpsychiatry.2009.193
  79. Papiol S, 2017, TRANSL PSYCHIAT, V7, DOI 10.1038/tp.2017.131
  80. Papiol S, 2019, TRANSL PSYCHIAT, V9, DOI 10.1038/s41398-019-0618-z
  81. Pardiñas AF, 2018, NAT GENET, V50, P381, DOI 10.1038/s41588-018-0059-2
  82. Popovic D, 2019, FRONT NEUROSCI-SWITZ, V13, DOI 10.3389/fnins.2019.00274
  83. Prata DP, 2013, HUM BRAIN MAPP, V34, P2025, DOI 10.1002/hbm.22045
  84. Quednow BB, 2014, CELL MOL LIFE SCI, V71, P2815, DOI 10.1007/s00018-013-1553-4
  85. Raabe FJ, 2022, CELLS-BASEL, V11, DOI 10.3390/cells11020241
  86. Raabe FJ, 2019, CELLS-BASEL, V8, DOI 10.3390/cells8121496
  87. Raabe FJ, 2018, NPJ SCHIZOPHR, V4, DOI 10.1038/s41537-018-0066-4
  88. Ripke S, 2014, NATURE, V511, P421, DOI 10.1038/nature13595
  89. Roell L, 2022, EUR ARCH PSY CLIN N, V272, P1253, DOI 10.1007/s00406-022-01411-x
  90. Rowe RG, 2019, NAT REV GENET, V20, P377, DOI 10.1038/s41576-019-0100-z
  91. Santarelli DM, 2019, GENOM PROTEOM BIOINF, V17, P623, DOI 10.1016/j.gpb.2019.10.003
  92. Schmitt A, 2023, J NEURAL TRANSM, V130, P195, DOI 10.1007/s00702-022-02567-5
  93. Schmitt A, 2022, CELLS-BASEL, V11, DOI 10.3390/cells11203242
  94. Schmitt A, 2019, EUR ARCH PSY CLIN N, V269, P371, DOI 10.1007/s00406-019-01019-8
  95. Schmitt A, 2014, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00019
  96. Schmitt A, 2011, EUR ARCH PSY CLIN N, V261, P150, DOI 10.1007/s00406-011-0242-2
  97. Schmitt A, 2009, ACTA NEUROPATHOL, V117, P395, DOI 10.1007/s00401-008-0430-y
  98. Sha ZQ, 2019, BIOL PSYCHIAT, V85, P379, DOI 10.1016/j.biopsych.2018.11.011
  99. Shannon C, 2011, SCHIZOPHRENIA BULL, V37, P531, DOI 10.1093/schbul/sbp096
  100. Shen SM, 2005, J CELL BIOL, V169, P577, DOI 10.1083/jcb.200412101
  101. Shimada T, 2022, PSYCHIAT RES, V314, DOI 10.1016/j.psychres.2022.114656
  102. Sigurdsson T, 2010, NATURE, V464, P763, DOI 10.1038/nature08855
  103. Singh B, 2021, J CHEM NEUROANAT, V118, DOI 10.1016/j.jchemneu.2021.102035
  104. Skene NG, 2018, NAT GENET, V50, P825, DOI 10.1038/s41588-018-0129-5
  105. Stedehouder J, 2017, CEREB CORTEX, V27, P5001, DOI 10.1093/cercor/bhx203
  106. Stedehouder J, 2017, MOL PSYCHIATR, V22, P4, DOI 10.1038/mp.2016.147
  107. Steullet P, 2017, MOL PSYCHIATR, V22, P936, DOI 10.1038/mp.2017.47
  108. Svatkova A, 2015, SCHIZOPHRENIA BULL, V41, P869, DOI 10.1093/schbul/sbv033
  109. Trubetskoy V, 2022, NATURE, V604, P502, DOI 10.1038/s41586-022-04434-5
  110. Uranova N, 2001, BRAIN RES BULL, V55, P597, DOI 10.1016/S0361-9230(01)00528-7
  111. Uranova NA, 2010, WORLD J BIOL PSYCHIA, V11, P567, DOI 10.3109/15622970903414188
  112. van Praag H, 2000, NAT REV NEUROSCI, V1, P191, DOI 10.1038/35044558
  113. Vargas T, 2018, SCHIZOPHRENIA BULL, V44, P1091, DOI 10.1093/schbul/sbx160
  114. Varty GB, 2006, BEHAV BRAIN RES, V169, P162, DOI 10.1016/j.bbr.2005.11.025
  115. Voineskos AN, 2013, JAMA PSYCHIAT, V70, P472, DOI 10.1001/jamapsychiatry.2013.786
  116. Volk DW, 2000, ARCH GEN PSYCHIAT, V57, P237, DOI 10.1001/archpsyc.57.3.237
  117. Volkmann P, 2021, FRONT BEHAV NEUROSCI, V14, DOI 10.3389/fnbeh.2020.618180
  118. Wang F, 2020, NAT NEUROSCI, V23, P481, DOI 10.1038/s41593-020-0588-8
  119. Wedel M, 2020, NUCLEIC ACIDS RES, V48, P4839, DOI 10.1093/nar/gkaa218
  120. Windrem MS, 2017, CELL STEM CELL, V21, P195, DOI 10.1016/j.stem.2017.06.012
  121. Wirgenes KV, 2012, TRANSL PSYCHIAT, V2, DOI 10.1038/tp.2012.39
  122. Wittchen HU, 2011, EUR NEUROPSYCHOPHARM, V21, P655, DOI 10.1016/j.euroneuro.2011.07.018
  123. Yamada S, 2022, EUR ARCH PSY CLIN N, V272, P957, DOI 10.1007/s00406-021-01363-8
  124. Yao L, 2013, PROG NEURO-PSYCHOPH, V45, P100, DOI 10.1016/j.pnpbp.2013.04.019
  125. Ye F, 2009, NAT NEUROSCI, V12, P829, DOI 10.1038/nn.2333
  126. Yue WH, 2011, NAT GENET, V43, P1228, DOI 10.1038/ng.979
  127. Zhang HC, 2023, NEUROSCI BIOBEHAV R, V146, DOI 10.1016/j.neubiorev.2023.105064