Evaluating the efficacy of hearing aids for tinnitus therapy - A Positron emission tomography study

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
Citação
BRAIN RESEARCH, v.1775, article ID 147728, 9p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Brain imaging studies have revealed neural changes in chronic tinnitus patients that are not restricted to auditory brain areas; rather, the engagement of limbic system structures, attention and memory networks are has been noted. Hearing aids (HA) provide compensation for comorbid hearing loss and may decrease tinnitus-related perception and annoyance. Using resting state positron emission tomography our goal was to analyze metabolic and functional brain changes after six months of effective HA use by patients with chronic tinnitus and associated sensorineural hearing loss. 33 age and hearing loss matched participants with mild/moderate hearing loss were enrolled in this study: 19 with tinnitus, and 14 without tinnitus. Participants with tinnitus of more than 6 months with moderate/severe Tinnitus Handicap Inventory (THI) and Visual Analogue Scale (VAS) scores composed the tinnitus group. A full factorial 2X2 ANOVA was conducted for imaging analysis, with group (tinnitus and controls) and time point (pre-intervention and post-intervention) as factors. Six months after HA fitting, tinnitus scores reduced statistically and clinically. Analysis revealed increased glycolytic metabolism in the left orbitofrontal cortex, right temporal lobe and right hippocampus, and reduced glycolytic metabolism in the left cerebellum and inferior parietal lobe within the tinnitus group. The hearing loss control group showed no significant metabolic changes in the analysis. Parsing out the contribution of tinnitus independent of hearing loss, allowed us to identify areas implicated in declines in tinnitus handicap as a result of the intervention. Brain regions implicated in the present study may be part of chronic tinnitus-specific network.
Palavras-chave
Tinnitus, Bilateral sensorineural hearing loss, Neuroimaging, Hearing aids, Positron emission tomography imaging
Referências
  1. Aiello CP, 2011, BRAZ J OTORHINOLAR, V77, P432, DOI 10.1590/S1808-86942011000400005
  2. AKSHOOMOFF NA, 1992, BEHAV NEUROSCI, V106, P731, DOI 10.1037/0735-7044.106.5.731
  3. American Speech and Hearing Association (ASHA), 2009, TINN AUD INF SER
  4. Bauer CA, 2013, HEARING RES, V295, P130, DOI 10.1016/j.heares.2012.03.009
  5. Beck D.L., 2011, HEARING J, V64, P12
  6. Elgoyhen AB, 2015, NAT REV NEUROSCI, V16, P632, DOI 10.1038/nrn4003
  7. Boyen K, 2014, HEARING RES, V312, P48, DOI 10.1016/j.heares.2014.03.001
  8. Brozoski TJ, 2007, HEARING RES, V228, P168, DOI 10.1016/j.heares.2007.02.003
  9. Carpenter-Thompson JR, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0144419
  10. Carpenter-Thompson JR, 2015, NEURAL PLAST, V2015, DOI 10.1155/2015/161478
  11. Carpenter-Thompson JR, 2014, BRAIN RES, V1567, P28, DOI 10.1016/j.brainres.2014.04.024
  12. Chen YC, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00022
  13. Chen YC, 2015, NEURAL PLAST, V2015, DOI 10.1155/2015/475382
  14. Critchley HD, 2005, J COMP NEUROL, V493, P154, DOI 10.1002/cne.20749
  15. D'Angelo E, 2011, J INTEGR NEUROSCI, V10, P317, DOI 10.1142/S0219635211002762
  16. De Ridder D, 2006, ACTA OTO-LARYNGOL, V126, P50, DOI 10.1080/03655230600895580
  17. De Ridder D, 2011, P NATL ACAD SCI USA, V108, P8075, DOI 10.1073/pnas.1018466108
  18. Eckert MA, 2012, JARO-J ASSOC RES OTO, V13, P703, DOI 10.1007/s10162-012-0332-5
  19. Eggermont JJ, 2012, FRONT SYST NEUROSCI, V6, DOI 10.3389/fnsys.2012.00053
  20. Eichhammer P, 2007, PROG BRAIN RES, V166, P83, DOI 10.1016/S0079-6123(07)66008-7
  21. Feng Y, 2018, FRONT AGING NEUROSCI, V10, DOI 10.3389/fnagi.2018.00059
  22. Ferreira Paula Érika Alves, 2005, Pró-Fono R. Atual. Cient., V17, P303, DOI 10.1590/S0104-56872005000300004
  23. Fettes P, 2017, FRONT SYST NEUROSCI, V11, DOI 10.3389/fnsys.2017.00025
  24. Formby C, 2003, J ACOUST SOC AM, V114, P55, DOI 10.1121/1.1582860
  25. Frey S, 2000, P NATL ACAD SCI USA, V97, P8723, DOI 10.1073/pnas.140543497
  26. Ganzetti M, 2013, NEUROSCIENCE, V240, P297, DOI 10.1016/j.neuroscience.2013.02.032
  27. Henry JA, 2005, J SPEECH LANG HEAR R, V48, P1204, DOI 10.1044/1092-4388(2005/084)
  28. Hoare DJ, 2014, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010151.pub2
  29. Horwitz B, 2011, PROG NEUROBIOL, V95, P505, DOI 10.1016/j.pneurobio.2011.07.005
  30. Husain FT, 2016, HEARING RES, V334, P37, DOI 10.1016/j.heares.2015.09.010
  31. Husain FT, 2011, BRAIN RES, V1369, P74, DOI 10.1016/j.brainres.2010.10.095
  32. ITO M, 1984, JPN J PHYSIOL, V34, P781, DOI 10.2170/jjphysiol.34.781
  33. Jastreboff MM, 2007, PROG BRAIN RES, V166, P435, DOI 10.1016/S0079-6123(07)66042-7
  34. JASTREBOFF PJ, 1994, HEARING RES, V80, P216, DOI 10.1016/0378-5955(94)90113-9
  35. Keidser G, 2011, AUDIOL RES, V1, P88, DOI 10.4081/audiores.2011.e24
  36. Kringelbach ML, 2004, PROG NEUROBIOL, V72, P341, DOI 10.1016/j.pneurobio.2004.03.006
  37. Kroenke K, 2001, J GEN INTERN MED, V16, P606, DOI 10.1046/j.1525-1497.2001.016009606.x
  38. Landgrebe M, 2012, J PSYCHOSOM RES, V73, P112, DOI 10.1016/j.jpsychores.2012.05.002
  39. Landgrebe M, 2009, NEUROIMAGE, V46, P213, DOI 10.1016/j.neuroimage.2009.01.069
  40. Langguth B, 2006, ACTA OTO-LARYNGOL, V126, P84, DOI 10.1080/03655230600895317
  41. Lanting CP, 2009, HEARING RES, V255, P1, DOI 10.1016/j.heares.2009.06.009
  42. Leaver AM, 2011, NEURON, V69, P33, DOI 10.1016/j.neuron.2010.12.002
  43. Lockwood AH, 1998, NEUROLOGY, V50, P114, DOI 10.1212/WNL.50.1.114
  44. Lowe B, 2008, MED CARE, V46, P266, DOI 10.1097/MLR.0b013e318160d093
  45. Marcondes RA, 2010, EUR J NEUROL, V17, P38, DOI 10.1111/j.1468-1331.2009.02730.x
  46. Maudoux A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036222
  47. McLachlan NM, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00265
  48. Mirz F, 2000, ACTA OTO-LARYNGOL, P241
  49. Moffat G, 2009, HEARING RES, V254, P82, DOI 10.1016/j.heares.2009.04.016
  50. Neter J., 1996, APPL LINEAR STAT MOD
  51. NEWMAN CW, 1990, EAR HEARING, V11, P430, DOI 10.1097/00003446-199012000-00004
  52. Newman CW, 1996, ARCH OTOLARYNGOL, V122, P143
  53. Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
  54. Norena AJ, 2011, NEUROSCI BIOBEHAV R, V35, P1089, DOI 10.1016/j.neubiorev.2010.11.003
  55. Ochsner KN, 2005, TRENDS COGN SCI, V9, P242, DOI 10.1016/j.tics.2005.03.010
  56. Oiticica J, 2015, BRAZ J OTORHINOLAR, V81, P167, DOI 10.1016/j.bjorl.2014.12.004
  57. Osaki Y, 2005, NEUROREPORT, V16, P1625, DOI 10.1097/01.wnr.0000183899.85277.08
  58. Parazzini M, 2011, INT J AUDIOL, V50, P548, DOI 10.3109/14992027.2011.572263
  59. Petacchi A, 2005, HUM BRAIN MAPP, V25, P118, DOI 10.1002/hbm.20137
  60. Plewnia C, 2007, HUM BRAIN MAPP, V28, P238, DOI 10.1002/hbm.20270
  61. Plummer F, 2016, GEN HOSP PSYCHIAT, V39, P24, DOI 10.1016/j.genhosppsych.2015.11.005
  62. Ramnani N, 2006, NAT REV NEUROSCI, V7, P511, DOI 10.1038/nrn1953
  63. Rauschecker JP, 2015, TRENDS COGN SCI, V19, P567, DOI 10.1016/j.tics.2015.08.002
  64. Ruchalski K, 2012, RADIOL RES PRACT, V2012, DOI 10.1155/2012/258524
  65. SALTZMAN M, 1947, LARYNGOSCOPE, V57, P358
  66. Sanchez Tanit Ganz, 2005, Rev. Bras. Otorrinolaringol., V71, P427, DOI 10.1590/S0034-72992005000400005
  67. Schaette R, 2011, J NEUROSCI, V31, P13452, DOI 10.1523/JNEUROSCI.2156-11.2011
  68. Schecklmann M, 2013, HUM BRAIN MAPP, V34, P233, DOI 10.1002/hbm.21426
  69. Schlee W, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-80
  70. Seeley WW, 2007, J NEUROSCI, V27, P2349, DOI 10.1523/JNEUROSCI.5587-06.2007
  71. Sens Patrícia Maria, 2007, Rev. Bras. Otorrinolaringol., V73, P266, DOI 10.1590/S0034-72992007000200019
  72. Sereda M, 2018, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD013094.pub2
  73. Seydell-Greenwald A, 2012, BRAIN RES, V1485, P22, DOI 10.1016/j.brainres.2012.08.052
  74. Shahsavarani S., 2019, PERSPECTIVES ASHA SP, V4, P896, DOI 10.1044/2019_PERS-SIG6-2019-0001
  75. Shahsavarani S, 2021, BRAIN RES, V1755, DOI 10.1016/j.brainres.2021.147277
  76. Simonetti P, 2015, INT ARCH OTORHINOLAR, V19, P259, DOI 10.1055/s-0035-1548671
  77. Spencer RMC, 2007, NEUROIMAGE, V36, P378, DOI 10.1016/j.neuroimage.2007.03.009
  78. Sridharan D, 2008, P NATL ACAD SCI USA, V105, P12569, DOI 10.1073/pnas.0800005105
  79. Stamatakis EA, 1999, NEUROIMAGE, V10, P397, DOI 10.1006/nimg.1999.0477
  80. Sterne J, 2006, ESSENTIAL MED STAT
  81. Stoodley CJ, 2009, NEUROIMAGE, V44, P489, DOI 10.1016/j.neuroimage.2008.08.039
  82. Talairach J, 1988, COPLANAR STEREOTAXIC
  83. Toussaint PJ, 2012, NEUROIMAGE, V63, P936, DOI 10.1016/j.neuroimage.2012.03.091
  84. Tybout A, 2001, J CONSUM PSYCHOL, V10, P9
  85. Tyler, 2000, TINNITUS HDB
  86. Ueyama T, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137291
  87. Wong PCM, 2010, EAR HEARING, V31, P471, DOI 10.1097/AUD.0b013e3181d709c2